📄 batch_digits_unseen.m
字号:
function batch_Digits_inseenclose all;dbstop if error;load Digits_Data[num_ex,num_labels] = size(True_Y);for i = 1:num_labels ind_data(i).labels = find(True_Y(:,i) == 1);end% %plot the digit data% ex_dig = 256 * ((reshape(Data_X(ind_data(1).labels(1),:),16,16))' + 1)/2;% figure;image(ex_dig);% ex_dig = 256 * ((reshape(Data_X(ind_data(2).labels(1),:),16,16))' + 1)/2;% figure;image(ex_dig);lrn_par = Set_Default_Learning_Paramters;% distance paramterslrn_par.DST_TYPE = 1; % 1 for Euclidean, 2 for dot% Optimization for both ALPHA and SIGMA togetherlrn_par.OPT_S_A = 0; % set to 1 to optimize for both alpha and sigmalrn_par.Cluster_Search = [3,4,5]; % This defines the clusters to be evaluated%Clustering Examplemodel_cluster = LG_Cluster(Data_X,lrn_par);fprintf(1,'Now unseen....\n');load Digits_Data_us[un_class] = Classify_New_Data(Data_X_us,model_cluster);t10000 = 5;save temp;model = model_cluster;% plot class outliers outliersfor i = 1:num_labels for j = 1:3 ex_dig = 256 * ((reshape(Data_X(model.Class_Outlier(i).ind_sort(j),:),16,16))' + 1)/2; figure;image(ex_dig); title('Class outlier'); t77 = 77; end t77 = 0;end% plot bigist overall outliersfor i = 1:10 ex_dig = 256 * ((reshape(Data_X(model.ind_sort_mean_dist(i),:),16,16))' + 1)/2; figure;image(ex_dig); title('Worst overall outliers'); t77 = 77;enderror_thing(True_Y_us,un_class.Y)t10000 = 5;function error_thing(True_Y,Y) tab=crosstab(True_Y*(1:4)',Y*(1:4)'); xmax=max(tab); dcount=1; for i=1:length(xmax) xx=find(tab(:,i)==xmax(i)); if length(xx)>1 myperm(i)=xx(dcount); dcount=dcount+1; else myperm(i)=xx(1); end; end; for i=1:length(myperm) xx=find(myperm==i); if length(xx)<1 xmyperm(i)=1; else xmyperm(i)=xx(1); end; end; %myperm=xmyperm; tab=[tab(:,xmyperm), tab] True_Y=True_Y(:,myperm); errors = abs(Y - True_Y); err_ind = find(sum(abs(Y - True_Y)')'>0); num_errors = length(err_ind); err_rate = num_errors / length(True_Y)return;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -