⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 readme

📁 clustering_code ,Clustering Through Ranking On Manifolds Version 0.2 Copyright by Markus Breit
💻
字号:
 Clustering Through Ranking On Manifolds Version 0.2 Copyright by Markus Breitenbach and Gregory Z. Grudic This code is for your personal and research use only. http://www.cs.colorado.edu/~grudic/ http://ucsu.colorado.edu/~breitenm/ This software is provided "as is," without warranty of any kind, express or implied.  In no event shall the authors be held liable for any direct, indirect, incidental, special or consequential damages arising out of the use of or inability to use this software.LG_Cluster.m                     - Clustering of DataClassify_New_Data.m              - Classification of new data (out-of-sample)Set_Default_Learning_Paramters.m - Set learning parametersbatch_3_Spiral_3D.m              - A toy-data example (3 spirals)batch_test_toys.m                - A toy-data examplebatch_two_moon_toy_stuff.merror_thing.m                    - Compute the error-rate for clusteringThe model is a struct that looks like this:               DST_TYPE: 1                 -- DST type (Euclidean / Dot-product)                  SCALE: 1                 -- Data scaled?                      A: [256x1 double]    -- Scaling...                      B: [256x1 double]          Class_Outlier: [1x4 struct]      -- Outliers for each class                 F_orig: [800x4 double]    -- Original F matrix (columns selected using inc_clust)                 F_norm: [800x4 double]    -- scaled F matrix (columns selected using inc_clust)                      Y: [800x4 double]    -- Labels for the data (a 1 in a column i indicating that the case is in class i)                 Y_orig: [800x4 double]    -- same thing, but a different underlying implementation              mean_dist: [1x800 double]    -- mean distance of matrix D_M         sort_mean_dist: [1x800 double]    -- sorted...     ind_sort_mean_dist: [1x800 double]    -- the indices of the sorted matrix D_M - use for Outlier Detection                 S_norm: [800x800 double]  -- normalized S matrix         ind_mat_unseen: [800x800 double]  -- precomputed for unseen data    one_over_2_sigma_sq: 0.3953            -- one over 2 sigma squared...                      X: [800x256 double]  -- the training data                     Dt: [1x800 double]    -- Diagonal of W            num_classes: 4                 -- Number of clusters           norm_iaS_inv: [800x800 double]  -- normalized F matrix                iaS_inv: [800x800 double]  -- F matrix               my_alpha: 0.9949            -- Alpha               my_sigma: 1.1246            -- Sigma              ind_clust: [4x1 double]      -- the inidices for the centersmodel.Class_Outlier is a struct containing:    val           --    ind           -- logical indicating class membership of the case    sort_val      --    ind_sort      -- indices of worst outliers - use for Outlier Detection    plot_values   --Known bugs:-the optimization procedure got reimplemented on the way and the results for USPS got slightly worse. This is currently under investigation.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -