📄 stm3210e_eval_lcd.c
字号:
*/
void LCD_PolyLine(pPoint Points, uint16_t PointCount)
{
int16_t X = 0, Y = 0;
if(PointCount < 2)
{
return;
}
while(--PointCount)
{
X = Points->X;
Y = Points->Y;
Points++;
LCD_DrawUniLine(X, Y, Points->X, Points->Y);
}
}
/**
* @brief Displays an relative polyline (between many points).
* @param Points: pointer to the points array.
* @param PointCount: Number of points.
* @param Closed: specifies if the draw is closed or not.
* 1: closed, 0 : not closed.
* @retval None
*/
static void LCD_PolyLineRelativeClosed(pPoint Points, uint16_t PointCount, uint16_t Closed)
{
int16_t X = 0, Y = 0;
pPoint First = Points;
if(PointCount < 2)
{
return;
}
X = Points->X;
Y = Points->Y;
while(--PointCount)
{
Points++;
LCD_DrawUniLine(X, Y, X + Points->X, Y + Points->Y);
X = X + Points->X;
Y = Y + Points->Y;
}
if(Closed)
{
LCD_DrawUniLine(First->X, First->Y, X, Y);
}
}
/**
* @brief Displays a closed polyline (between many points).
* @param Points: pointer to the points array.
* @param PointCount: Number of points.
* @retval None
*/
void LCD_ClosedPolyLine(pPoint Points, uint16_t PointCount)
{
LCD_PolyLine(Points, PointCount);
LCD_DrawUniLine(Points->X, Points->Y, (Points+PointCount-1)->X, (Points+PointCount-1)->Y);
}
/**
* @brief Displays a relative polyline (between many points).
* @param Points: pointer to the points array.
* @param PointCount: Number of points.
* @retval None
*/
void LCD_PolyLineRelative(pPoint Points, uint16_t PointCount)
{
LCD_PolyLineRelativeClosed(Points, PointCount, 0);
}
/**
* @brief Displays a closed relative polyline (between many points).
* @param Points: pointer to the points array.
* @param PointCount: Number of points.
* @retval None
*/
void LCD_ClosedPolyLineRelative(pPoint Points, uint16_t PointCount)
{
LCD_PolyLineRelativeClosed(Points, PointCount, 1);
}
/**
* @brief Displays a full polyline (between many points).
* @param Points: pointer to the points array.
* @param PointCount: Number of points.
* @retval None
*/
void LCD_FillPolyLine(pPoint Points, uint16_t PointCount)
{
/* public-domain code by Darel Rex Finley, 2007 */
uint16_t nodes = 0, nodeX[MAX_POLY_CORNERS], pixelX = 0, pixelY = 0, i = 0,
j = 0, swap = 0;
uint16_t IMAGE_LEFT = 0, IMAGE_RIGHT = 0, IMAGE_TOP = 0, IMAGE_BOTTOM = 0;
IMAGE_LEFT = IMAGE_RIGHT = Points->X;
IMAGE_TOP= IMAGE_BOTTOM = Points->Y;
for(i = 1; i < PointCount; i++)
{
pixelX = POLY_X(i);
if(pixelX < IMAGE_LEFT)
{
IMAGE_LEFT = pixelX;
}
if(pixelX > IMAGE_RIGHT)
{
IMAGE_RIGHT = pixelX;
}
pixelY = POLY_Y(i);
if(pixelY < IMAGE_TOP)
{
IMAGE_TOP = pixelY;
}
if(pixelY > IMAGE_BOTTOM)
{
IMAGE_BOTTOM = pixelY;
}
}
LCD_SetTextColor(BackColor);
/* Loop through the rows of the image. */
for (pixelY = IMAGE_TOP; pixelY < IMAGE_BOTTOM; pixelY++)
{
/* Build a list of nodes. */
nodes = 0; j = PointCount-1;
for (i = 0; i < PointCount; i++)
{
if (POLY_Y(i)<(double) pixelY && POLY_Y(j)>=(double) pixelY || POLY_Y(j)<(double) pixelY && POLY_Y(i)>=(double) pixelY)
{
nodeX[nodes++]=(int) (POLY_X(i)+((pixelY-POLY_Y(i))*(POLY_X(j)-POLY_X(i)))/(POLY_Y(j)-POLY_Y(i)));
}
j = i;
}
/* Sort the nodes, via a simple "Bubble" sort. */
i = 0;
while (i < nodes-1)
{
if (nodeX[i]>nodeX[i+1])
{
swap = nodeX[i];
nodeX[i] = nodeX[i+1];
nodeX[i+1] = swap;
if(i)
{
i--;
}
}
else
{
i++;
}
}
/* Fill the pixels between node pairs. */
for (i = 0; i < nodes; i+=2)
{
if(nodeX[i] >= IMAGE_RIGHT)
{
break;
}
if(nodeX[i+1] > IMAGE_LEFT)
{
if (nodeX[i] < IMAGE_LEFT)
{
nodeX[i]=IMAGE_LEFT;
}
if(nodeX[i+1] > IMAGE_RIGHT)
{
nodeX[i+1] = IMAGE_RIGHT;
}
LCD_SetTextColor(BackColor);
LCD_DrawLine(pixelY, nodeX[i+1], nodeX[i+1] - nodeX[i], LCD_DIR_HORIZONTAL);
LCD_SetTextColor(TextColor);
PutPixel(pixelY, nodeX[i+1]);
PutPixel(pixelY, nodeX[i]);
/* for (j=nodeX[i]; j<nodeX[i+1]; j++) PutPixel(j,pixelY); */
}
}
}
/* draw the edges */
LCD_SetTextColor(TextColor);
}
/**
* @brief Writes to the selected LCD register.
* @param LCD_Reg: address of the selected register.
* @param LCD_RegValue: value to write to the selected register.
* @retval None
*/
void LCD_WriteReg(uint8_t LCD_Reg, uint16_t LCD_RegValue)
{
/* Write 16-bit Index, then Write Reg */
LCD->LCD_REG = LCD_Reg;
/* Write 16-bit Reg */
LCD->LCD_RAM = LCD_RegValue;
}
/**
* @brief Reads the selected LCD Register.
* @param LCD_Reg: address of the selected register.
* @retval LCD Register Value.
*/
uint16_t LCD_ReadReg(uint8_t LCD_Reg)
{
/* Write 16-bit Index (then Read Reg) */
LCD->LCD_REG = LCD_Reg;
/* Read 16-bit Reg */
return (LCD->LCD_RAM);
}
/**
* @brief Prepare to write to the LCD RAM.
* @param None
* @retval None
*/
void LCD_WriteRAM_Prepare(void)
{
LCD->LCD_REG = LCD_REG_34;
}
/**
* @brief Writes to the LCD RAM.
* @param RGB_Code: the pixel color in RGB mode (5-6-5).
* @retval None
*/
void LCD_WriteRAM(uint16_t RGB_Code)
{
/* Write 16-bit GRAM Reg */
LCD->LCD_RAM = RGB_Code;
}
/**
* @brief Reads the LCD RAM.
* @param None
* @retval LCD RAM Value.
*/
uint16_t LCD_ReadRAM(void)
{
/* Write 16-bit Index (then Read Reg) */
LCD->LCD_REG = LCD_REG_34; /* Select GRAM Reg */
/* Read 16-bit Reg */
return LCD->LCD_RAM;
}
/**
* @brief Power on the LCD.
* @param None
* @retval None
*/
void LCD_PowerOn(void)
{
/* Power On sequence ---------------------------------------------------------*/
LCD_WriteReg(LCD_REG_16, 0x0000); /* SAP, BT[3:0], AP, DSTB, SLP, STB */
LCD_WriteReg(LCD_REG_17, 0x0000); /* DC1[2:0], DC0[2:0], VC[2:0] */
LCD_WriteReg(LCD_REG_18, 0x0000); /* VREG1OUT voltage */
LCD_WriteReg(LCD_REG_19, 0x0000); /* VDV[4:0] for VCOM amplitude*/
_delay_(20); /* Dis-charge capacitor power voltage (200ms) */
LCD_WriteReg(LCD_REG_16, 0x17B0); /* SAP, BT[3:0], AP, DSTB, SLP, STB */
LCD_WriteReg(LCD_REG_17, 0x0137); /* DC1[2:0], DC0[2:0], VC[2:0] */
_delay_(5); /* Delay 50 ms */
LCD_WriteReg(LCD_REG_18, 0x0139); /* VREG1OUT voltage */
_delay_(5); /* Delay 50 ms */
LCD_WriteReg(LCD_REG_19, 0x1d00); /* VDV[4:0] for VCOM amplitude */
LCD_WriteReg(LCD_REG_41, 0x0013); /* VCM[4:0] for VCOMH */
_delay_(5); /* Delay 50 ms */
LCD_WriteReg(LCD_REG_7, 0x0173); /* 262K color and display ON */
}
/**
* @brief Enables the Display.
* @param None
* @retval None
*/
void LCD_DisplayOn(void)
{
/* Display On */
LCD_WriteReg(LCD_REG_7, 0x0173); /* 262K color and display ON */
}
/**
* @brief Disables the Display.
* @param None
* @retval None
*/
void LCD_DisplayOff(void)
{
/* Display Off */
LCD_WriteReg(LCD_REG_7, 0x0);
}
/**
* @brief Configures LCD Control lines (FSMC Pins) in alternate function mode.
* @param None
* @retval None
*/
void LCD_CtrlLinesConfig(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
/* Enable FSMC, GPIOD, GPIOE, GPIOF, GPIOG and AFIO clocks */
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_FSMC, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD | RCC_APB2Periph_GPIOE |
RCC_APB2Periph_GPIOF | RCC_APB2Periph_GPIOG |
RCC_APB2Periph_AFIO, ENABLE);
/* Set PD.00(D2), PD.01(D3), PD.04(NOE), PD.05(NWE), PD.08(D13), PD.09(D14),
PD.10(D15), PD.14(D0), PD.15(D1) as alternate function push pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_4 | GPIO_Pin_5 |
GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_14 |
GPIO_Pin_15;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOD, &GPIO_InitStructure);
/* Set PE.07(D4), PE.08(D5), PE.09(D6), PE.10(D7), PE.11(D8), PE.12(D9), PE.13(D10),
PE.14(D11), PE.15(D12) as alternate function push pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 |
GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 |
GPIO_Pin_15;
GPIO_Init(GPIOE, &GPIO_InitStructure);
/* Set PF.00(A0 (RS)) as alternate function push pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;
GPIO_Init(GPIOF, &GPIO_InitStructure);
/* Set PG.12(NE4 (LCD/CS)) as alternate function push pull - CE3(LCD /CS) */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12;
GPIO_Init(GPIOG, &GPIO_InitStructure);
}
/**
* @brief Configures the Parallel interface (FSMC) for LCD(Parallel mode)
* @param None
* @retval None
*/
void LCD_FSMCConfig(void)
{
FSMC_NORSRAMInitTypeDef FSMC_NORSRAMInitStructure;
FSMC_NORSRAMTimingInitTypeDef p;
/*-- FSMC Configuration ------------------------------------------------------*/
/*----------------------- SRAM Bank 4 ----------------------------------------*/
/* FSMC_Bank1_NORSRAM4 configuration */
p.FSMC_AddressSetupTime = 1;
p.FSMC_AddressHoldTime = 0;
p.FSMC_DataSetupTime = 2;
p.FSMC_BusTurnAroundDuration = 0;
p.FSMC_CLKDivision = 0;
p.FSMC_DataLatency = 0;
p.FSMC_AccessMode = FSMC_AccessMode_A;
/* Color LCD configuration ------------------------------------
LCD configured as follow:
- Data/Address MUX = Disable
- Memory Type = SRAM
- Data Width = 16bit
- Write Operation = Enable
- Extended Mode = Enable
- Asynchronous Wait = Disable */
FSMC_NORSRAMInitStructure.FSMC_Bank = FSMC_Bank1_NORSRAM4;
FSMC_NORSRAMInitStructure.FSMC_DataAddressMux = FSMC_DataAddressMux_Disable;
FSMC_NORSRAMInitStructure.FSMC_MemoryType = FSMC_MemoryType_SRAM;
FSMC_NORSRAMInitStructure.FSMC_MemoryDataWidth = FSMC_MemoryDataWidth_16b;
FSMC_NORSRAMInitStructure.FSMC_BurstAccessMode = FSMC_BurstAccessMode_Disable;
FSMC_NORSRAMInitStructure.FSMC_AsynchronousWait = FSMC_AsynchronousWait_Disable;
FSMC_NORSRAMInitStructure.FSMC_WaitSignalPolarity = FSMC_WaitSignalPolarity_Low;
FSMC_NORSRAMInitStructure.FSMC_WrapMode = FSMC_WrapMode_Disable;
FSMC_NORSRAMInitStructure.FSMC_WaitSignalActive = FSMC_WaitSignalActive_BeforeWaitState;
FSMC_NORSRAMInitStructure.FSMC_WriteOperation = FSMC_WriteOperation_Enable;
FSMC_NORSRAMInitStructure.FSMC_WaitSignal = FSMC_WaitSignal_Disable;
FSMC_NORSRAMInitStructure.FSMC_ExtendedMode = FSMC_ExtendedMode_Disable;
FSMC_NORSRAMInitStructure.FSMC_WriteBurst = FSMC_WriteBurst_Disable;
FSMC_NORSRAMInitStructure.FSMC_ReadWriteTimingStruct = &p;
FSMC_NORSRAMInitStructure.FSMC_WriteTimingStruct = &p;
FSMC_NORSRAMInit(&FSMC_NORSRAMInitStructure);
/* BANK 4 (of NOR/SRAM Bank 1~4) is enabled */
FSMC_NORSRAMCmd(FSMC_Bank1_NORSRAM4, ENABLE);
}
/**
* @brief Displays a pixel.
* @param x: pixel x.
* @param y: pixel y.
* @retval None
*/
static void PutPixel(int16_t x, int16_t y)
{
if(x < 0 || x > 239 || y < 0 || y > 319)
{
return;
}
LCD_DrawLine(x, y, 1, LCD_DIR_HORIZONTAL);
}
#ifndef USE_Delay
/**
* @brief Inserts a delay time.
* @param nCount: specifies the delay time length.
* @retval None
*/
static void delay(vu32 nCount)
{
vu32 index = 0;
for(index = (100000 * nCount); index != 0; index--)
{
}
}
#endif /* USE_Delay*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -