📄 directedgraphbase.java
字号:
/* * USE - UML based specification environment * Copyright (C) 1999-2004 Mark Richters, University of Bremen * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* $ProjectHeader: use 2-3-0-release.1 Mon, 12 Sep 2005 20:18:33 +0200 green $ */package org.tzi.use.graph;import java.util.AbstractCollection;import java.util.ArrayList;import java.util.HashMap;import java.util.HashSet;import java.util.Iterator;import java.util.List;import java.util.Map;import java.util.Set;/** * Basic implementation of directed graphs. * * @version $ProjectVersion: 2-3-0-release.1 $ * @author Mark Richters * @see DirectedGraph */public class DirectedGraphBase extends AbstractCollection implements DirectedGraph { private Map fNodes; // (Object -> NodeInfo) private List fEdges; // (DirectedEdge) /** * Constructs an empty graph. */ public DirectedGraphBase() { fNodes = new HashMap(); fEdges = new ArrayList(); } /** * Constructs an empty graph with the specified initial capacity * for nodes. */ public DirectedGraphBase(int initialNodeCapacity) { fNodes = new HashMap(initialNodeCapacity); fEdges = new ArrayList(); } // Query Operations /** * Returns the number of nodes in this graph. If this graph * contains more than <tt>Integer.MAX_VALUE</tt> elements, returns * <tt>Integer.MAX_VALUE</tt>. * * @return the number of nodes in this graph */ public int size() { return fNodes.size(); } /** * Returns <tt>true</tt> if this graph contains the specified * node. More formally, returns <tt>true</tt> if and only if this * graph contains at least one node <tt>e</tt> such that * <tt>(o==null ? e==null : o.equals(e))</tt>. * * @param o element whose presence in this graph is to be tested. * @return <tt>true</tt> if this graph contains the specified * node */ public boolean contains(Object o) { if (o == null ) throw new NullPointerException(); return fNodes.containsKey(o); } /** * Returns an iterator over the nodes in this collection. There are no * guarantees concerning the order in which the nodes are returned. * * @return an <tt>Iterator</tt> over the nodes in this graph */ public Iterator iterator() { return fNodes.keySet().iterator(); } /** * Adds the specified node to this graph if it is not already * present. If this graph already contains the specified node, * the call leaves this Graph unchanged and returns * <tt>false</tt>. * * @param o node to be added to this graph. * @return <tt>true</tt> if this graph did not already contain the * specified node. * @throws NullPointerException n is null. */ public boolean add(Object o) { if (o == null ) throw new NullPointerException(); if (fNodes.containsKey(o) ) return false; else { fNodes.put(o, new NodeInfo()); return true; } } /** * Removes the specified node and all incident edges from this * graph if it is present. If this graph does not contain the * specified node, the call leaves this Graph unchanged and * returns <tt>false</tt>. * * @param o node to be removed from this graph. * @return <tt>true</tt> if this graph did contain the * specified node and removed it. */ public boolean remove(Object o) { if (o == null ) return false; if (! fNodes.containsKey(o) ) return false; NodeInfo ni = getNodeInfo(o); // remove incident edges fEdges.removeAll(ni.fIncomingEdges); fEdges.removeAll(ni.fOutgoingEdges); fNodes.remove(o); return true; } // Graph specific Operations /** * Returns the number of all edges in this graph. * * @return the number of edges in this graph */ public int numEdges() { return fEdges.size(); } /** * Returns the number of cyclic edges in this graph. * * @return the number of cyclic edges in this graph */ public int numCycles() { int result = 0; Iterator it = fEdges.iterator(); while (it.hasNext() ) { DirectedEdge e = (DirectedEdge) it.next(); if (e.isReflexive() ) result++; } return result; } /** * Returns the number of all incoming edges for the specified node. * * @return the number of incoming edges for node n * @throws NullPointerException n is null. * @throws NodeDoesNotExistException n is not part of this graph. */ public int numIncomingEdges(Object n) { // check for existing node NodeInfo ni = getNodeInfo(n); return ni.fIncomingEdges.size(); } /** * Returns the number of all outgoing edges of the specified node. * * @return the number of outgoing edges for node n * @throws NullPointerException n is null. * @throws NodeDoesNotExistException n is not part of this graph. */ public int numOutgoingEdges(Object n) { // check for existing node NodeInfo ni = getNodeInfo(n); return ni.fOutgoingEdges.size(); } /** * Returns an iterator over the edges in this collection. There * are no guarantees concerning the order in which the edges are * returned. The iterator delivers instances of type * <code>DirectedEdge</code>. * * @return an <tt>Iterator</tt> over the edges in this graph * @see DirectedEdge */ public Iterator edgeIterator() { return fEdges.iterator(); } /** * Adds the specified edge to this graph. Multiple edges between * the same nodes may exist but they must be distinct, i.e. their * equals method is pair-wise false. * * @param e edge to be added to this graph. * @return <tt>true</tt> if this graph did not already contain the * specified edge. * @exception NodeDoesNotExistException node referenced by e is * not part of this graph. * @exception NullPointerException e is null. */ public boolean addEdge(DirectedEdge e) { if (e == null ) throw new NullPointerException(); if (fEdges.contains(e) ) return false; NodeInfo source = (NodeInfo) fNodes.get(e.source()); if (source == null ) throw new NodeDoesNotExistException(e.source().toString()); NodeInfo target = (NodeInfo) fNodes.get(e.target()); if (target == null ) throw new NodeDoesNotExistException(e.target().toString()); source.addOutgoingEdge(e); target.addIncomingEdge(e); fEdges.add(e); return true; } /** * Removes the specified edge from this graph. * * @param e edge to be removed from this graph. * @return <tt>true</tt> if the specified edge could be removed. * @throws NullPointerException e is null. */ public boolean removeEdge(DirectedEdge e) { if (e == null ) throw new NullPointerException(); if (! fEdges.contains(e) ) return false; NodeInfo source = (NodeInfo) fNodes.get(e.source()); NodeInfo target = (NodeInfo) fNodes.get(e.target()); source.removeOutgoingEdge(e); target.removeIncomingEdge(e); fEdges.remove(e); return true; } // Views /** * Returns a set view of nodes which are directly reachable by outgoing * edges from <code>n</code>. * * @return a set view of reachable target nodes. * @throws NodeDoesNotExistException node n is not part of this graph. * @throws NullPointerException n is null. */ public Set targetNodeSet(Object n) { // check for existing node NodeInfo ni = getNodeInfo(n); Set result = new HashSet(); Iterator it = ni.outgoingEdgeIterator(); while (it.hasNext() ) { DirectedEdge e = (DirectedEdge) it.next(); result.add(e.target()); } return result; } /** * Returns a set view of nodes which are reachable by one ore more * outgoing edges from <code>n</code>. * * @return a set view of all reachable target nodes. * @throws NodeDoesNotExistException node n is not part of this graph. * @throws NullPointerException n is null. */ public Set targetNodeClosureSet(Object n) { // check for existing node getNodeInfo(n); Set closure = new HashSet(); targetNodeClosureSet0(closure, n); return closure; } private void targetNodeClosureSet0(Set closure, Object n) { NodeInfo ni = (NodeInfo) fNodes.get(n); if ( ni != null ) { Iterator it = ni.outgoingEdgeIterator(); while (it.hasNext() ) { Object n2 = ((DirectedEdge) it.next()).target(); if (! closure.contains(n2) ) { closure.add(n2); targetNodeClosureSet0(closure, n2); } } } } /** * Returns a set view of nodes which have directed edges targeting * <code>n</code>. * * @return a set view of connected source nodes. * @throws NodeDoesNotExistException node n is not part of this graph. * @throws NullPointerException n is null. */ public Set sourceNodeSet(Object n) { // check for existing node NodeInfo ni = getNodeInfo(n); Set result = new HashSet(); Iterator it = ni.incomingEdgeIterator(); while (it.hasNext() ) { DirectedEdge e = (DirectedEdge) it.next(); result.add(e.source()); } return result; } /** * Returns a set view of all nodes which have a path to * <code>n</code>. * * @return a set view of all nodes leading to n. * @throws NodeDoesNotExistException node n is not part of this graph. * @throws NullPointerException n is null. */ public Set sourceNodeClosureSet(Object n) { // check for existing node getNodeInfo(n); Set closure = new HashSet(); sourceNodeClosureSet0(closure, n); return closure; } private void sourceNodeClosureSet0(Set closure, Object n) { NodeInfo ni = (NodeInfo) fNodes.get(n); Iterator it = ni.incomingEdgeIterator(); while (it.hasNext() ) { Object n2 = ((DirectedEdge) it.next()).source(); if (! closure.contains(n2) ) { closure.add(n2); sourceNodeClosureSet0(closure, n2); } } } /** * Returns the set of edges between two nodes. * * @return Set(Object) * @throws NodeDoesNotExistException node n1 or n2 is not in this graph. * @throws NullPointerException n1 or n2 is null. */ public Set edgesBetween(Object n1, Object n2) { // check for existing nodes NodeInfo ni1 = getNodeInfo(n1); getNodeInfo(n2); Set result = new HashSet(); Iterator edgeIter = ni1.outgoingEdgeIterator(); while (edgeIter.hasNext() ) { DirectedEdge e = (DirectedEdge) edgeIter.next(); if (e.target().equals(n2) ) result.add(e); } edgeIter = ni1.incomingEdgeIterator(); while (edgeIter.hasNext() ) { DirectedEdge e = (DirectedEdge) edgeIter.next(); if (e.source().equals(n2) ) result.add(e); } return result; } /** * Returns true if there is a set of directed edges from n1 to n2. * * @return true if there is a set of directed edges from n1 to n2. * @throws NodeDoesNotExistException node n1 or n2 is not in this graph. * @throws NullPointerException n1 or n2 is null. */ public boolean existsPath(Object n1, Object n2) { // check for existing nodes getNodeInfo(n1); getNodeInfo(n2); return targetNodeClosureSet(n1).contains(n2); } /** * Returns true if the graph contains at least one cycle. * * @return true if the graph contains at least one cycle. */ public boolean hasCycle() { // FIXME: this is inefficient Iterator it = iterator(); while (it.hasNext() ) { Object n = it.next(); if (targetNodeClosureSet(n).contains(n) ) return true; } return false; } private NodeInfo getNodeInfo(Object n) { if (n == null ) throw new NullPointerException(); NodeInfo ni = (NodeInfo) fNodes.get(n); if (ni == null ) throw new NodeDoesNotExistException(n.toString()); return ni; } /** * For each node we maintain a list of outgoing edges and incoming edges. */ private class NodeInfo { List fOutgoingEdges; // (DirectedEdge) List fIncomingEdges; // (DirectedEdge) NodeInfo() { fOutgoingEdges = new ArrayList(); fIncomingEdges = new ArrayList(); } void addOutgoingEdge(DirectedEdge e) { fOutgoingEdges.add(e); } void removeOutgoingEdge(DirectedEdge e) { fOutgoingEdges.remove(e); } void addIncomingEdge(DirectedEdge e) { fIncomingEdges.add(e); } void removeIncomingEdge(DirectedEdge e) { fIncomingEdges.remove(e); } Iterator outgoingEdgeIterator() { return fOutgoingEdges.iterator(); } Iterator incomingEdgeIterator() { return fIncomingEdges.iterator(); } } public String toString() { return "V=" + super.toString() + ", E=" + fEdges; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -