⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 svm.java

📁 能够检测到人脸
💻 JAVA
📖 第 1 页 / 共 5 页
字号:
				{
					++nr_free1;
					sum_free1 += G[i];
				}
			}
			else
			{
				if(is_lower_bound(i))
					ub2 = Math.min(ub2,G[i]);
				else if(is_upper_bound(i))
					lb2 = Math.max(lb2,G[i]);
				else
				{
					++nr_free2;
					sum_free2 += G[i];
				}
			}
		}

		double r1,r2;
		if(nr_free1 > 0)
			r1 = sum_free1/nr_free1;
		else
			r1 = (ub1+lb1)/2;

		if(nr_free2 > 0)
			r2 = sum_free2/nr_free2;
		else
			r2 = (ub2+lb2)/2;

		si.r = (r1+r2)/2;
		return (r1-r2)/2;
	}
}

//
// Q matrices for various formulations
//
class SVC_Q extends Kernel
{
	private final byte[] y;
	private final Cache cache;
	private final float[] QD;

	SVC_Q(svm_problem prob, svm_parameter param, byte[] y_)
	{
		super(prob.l, prob.x, param);
		y = (byte[])y_.clone();
		cache = new Cache(prob.l,(int)(param.cache_size*(1<<20)));
		QD = new float[prob.l];
		for(int i=0;i<prob.l;i++)
			QD[i]= (float)kernel_function(i,i);
	}

	float[] get_Q(int i, int len)
	{
		float[][] data = new float[1][];
		int start;
		if((start = cache.get_data(i,data,len)) < len)
		{
			for(int j=start;j<len;j++)
				data[0][j] = (float)(y[i]*y[j]*kernel_function(i,j));
		}
		return data[0];
	}

	float[] get_QD()
	{
		return QD;
	}

	void swap_index(int i, int j)
	{
		cache.swap_index(i,j);
		super.swap_index(i,j);
		do {byte _=y[i]; y[i]=y[j]; y[j]=_;} while(false);
		do {float _=QD[i]; QD[i]=QD[j]; QD[j]=_;} while(false);
	}
}

class ONE_CLASS_Q extends Kernel
{
	private final Cache cache;
	private final float[] QD;

	ONE_CLASS_Q(svm_problem prob, svm_parameter param)
	{
		super(prob.l, prob.x, param);
		cache = new Cache(prob.l,(int)(param.cache_size*(1<<20)));
		QD = new float[prob.l];
		for(int i=0;i<prob.l;i++)
			QD[i]= (float)kernel_function(i,i);
	}

	float[] get_Q(int i, int len)
	{
		float[][] data = new float[1][];
		int start;
		if((start = cache.get_data(i,data,len)) < len)
		{
			for(int j=start;j<len;j++)
				data[0][j] = (float)kernel_function(i,j);
		}
		return data[0];
	}

	float[] get_QD()
	{
		return QD;
	}

	void swap_index(int i, int j)
	{
		cache.swap_index(i,j);
		super.swap_index(i,j);
		do {float _=QD[i]; QD[i]=QD[j]; QD[j]=_;} while(false);
	}
}

class SVR_Q extends Kernel
{
	private final int l;
	private final Cache cache;
	private final byte[] sign;
	private final int[] index;
	private int next_buffer;
	private float[][] buffer;
	private final float[] QD;

	SVR_Q(svm_problem prob, svm_parameter param)
	{
		super(prob.l, prob.x, param);
		l = prob.l;
		cache = new Cache(l,(int)(param.cache_size*(1<<20)));
		QD = new float[2*l];
		sign = new byte[2*l];
		index = new int[2*l];
		for(int k=0;k<l;k++)
		{
			sign[k] = 1;
			sign[k+l] = -1;
			index[k] = k;
			index[k+l] = k;
			QD[k] = (float)kernel_function(k,k);
			QD[k+l] = QD[k];
		}
		buffer = new float[2][2*l];
		next_buffer = 0;
	}

	void swap_index(int i, int j)
	{
		do {byte _=sign[i]; sign[i]=sign[j]; sign[j]=_;} while(false);
		do {int _=index[i]; index[i]=index[j]; index[j]=_;} while(false);
		do {float _=QD[i]; QD[i]=QD[j]; QD[j]=_;} while(false);
	}

	float[] get_Q(int i, int len)
	{
		float[][] data = new float[1][];
		int real_i = index[i];
		if(cache.get_data(real_i,data,l) < l)
		{
			for(int j=0;j<l;j++)
				data[0][j] = (float)kernel_function(real_i,j);
		}

		// reorder and copy
		float buf[] = buffer[next_buffer];
		next_buffer = 1 - next_buffer;
		byte si = sign[i];
		for(int j=0;j<len;j++)
			buf[j] = si * sign[j] * data[0][index[j]];
		return buf;
	}

	float[] get_QD()
	{
		return QD;
	}
}

public class svm {
	//
	// construct and solve various formulations
	//
	private static void solve_c_svc(svm_problem prob, svm_parameter param,
					double[] alpha, Solver.SolutionInfo si,
					double Cp, double Cn)
	{
		int l = prob.l;
		double[] minus_ones = new double[l];
		byte[] y = new byte[l];

		int i;

		for(i=0;i<l;i++)
		{
			alpha[i] = 0;
			minus_ones[i] = -1;
			if(prob.y[i] > 0) y[i] = +1; else y[i]=-1;
		}

		Solver s = new Solver();
		s.Solve(l, new SVC_Q(prob,param,y), minus_ones, y,
			alpha, Cp, Cn, param.eps, si, param.shrinking);

		double sum_alpha=0;
		for(i=0;i<l;i++)
			sum_alpha += alpha[i];

		if (Cp==Cn)
			System.out.print("nu = "+sum_alpha/(Cp*prob.l)+"\n");

		for(i=0;i<l;i++)
			alpha[i] *= y[i];
	}

	private static void solve_nu_svc(svm_problem prob, svm_parameter param,
				 	double[] alpha, Solver.SolutionInfo si)
	{
		int i;
		int l = prob.l;
		double nu = param.nu;

		byte[] y = new byte[l];

		for(i=0;i<l;i++)
			if(prob.y[i]>0)
				y[i] = +1;
			else
				y[i] = -1;

		double sum_pos = nu*l/2;
		double sum_neg = nu*l/2;

		for(i=0;i<l;i++)
			if(y[i] == +1)
			{
				alpha[i] = Math.min(1.0,sum_pos);
				sum_pos -= alpha[i];
			}
			else
			{
				alpha[i] = Math.min(1.0,sum_neg);
				sum_neg -= alpha[i];
			}

		double[] zeros = new double[l];

		for(i=0;i<l;i++)
			zeros[i] = 0;

		Solver_NU s = new Solver_NU();
		s.Solve(l, new SVC_Q(prob,param,y), zeros, y,
			alpha, 1.0, 1.0, param.eps, si, param.shrinking);
		double r = si.r;

		System.out.print("C = "+1/r+"\n");

		for(i=0;i<l;i++)
			alpha[i] *= y[i]/r;

		si.rho /= r;
		si.obj /= (r*r);
		si.upper_bound_p = 1/r;
		si.upper_bound_n = 1/r;
	}

	private static void solve_one_class(svm_problem prob, svm_parameter param,
				    	double[] alpha, Solver.SolutionInfo si)
	{
		int l = prob.l;
		double[] zeros = new double[l];
		byte[] ones = new byte[l];
		int i;

		int n = (int)(param.nu*prob.l);	// # of alpha's at upper bound

		for(i=0;i<n;i++)
			alpha[i] = 1;
		if(n<prob.l)
			alpha[n] = param.nu * prob.l - n;
		for(i=n+1;i<l;i++)
			alpha[i] = 0;

		for(i=0;i<l;i++)
		{
			zeros[i] = 0;
			ones[i] = 1;
		}

		Solver s = new Solver();
		s.Solve(l, new ONE_CLASS_Q(prob,param), zeros, ones,
			alpha, 1.0, 1.0, param.eps, si, param.shrinking);
	}

	private static void solve_epsilon_svr(svm_problem prob, svm_parameter param,
					double[] alpha, Solver.SolutionInfo si)
	{
		int l = prob.l;
		double[] alpha2 = new double[2*l];
		double[] linear_term = new double[2*l];
		byte[] y = new byte[2*l];
		int i;

		for(i=0;i<l;i++)
		{
			alpha2[i] = 0;
			linear_term[i] = param.p - prob.y[i];
			y[i] = 1;

			alpha2[i+l] = 0;
			linear_term[i+l] = param.p + prob.y[i];
			y[i+l] = -1;
		}

		Solver s = new Solver();
		s.Solve(2*l, new SVR_Q(prob,param), linear_term, y,
			alpha2, param.C, param.C, param.eps, si, param.shrinking);

		double sum_alpha = 0;
		for(i=0;i<l;i++)
		{
			alpha[i] = alpha2[i] - alpha2[i+l];
			sum_alpha += Math.abs(alpha[i]);
		}
		System.out.print("nu = "+sum_alpha/(param.C*l)+"\n");
	}

	private static void solve_nu_svr(svm_problem prob, svm_parameter param,
					double[] alpha, Solver.SolutionInfo si)
	{
		int l = prob.l;
		double C = param.C;
		double[] alpha2 = new double[2*l];
		double[] linear_term = new double[2*l];
		byte[] y = new byte[2*l];
		int i;

		double sum = C * param.nu * l / 2;
		for(i=0;i<l;i++)
		{
			alpha2[i] = alpha2[i+l] = Math.min(sum,C);
			sum -= alpha2[i];

			linear_term[i] = - prob.y[i];
			y[i] = 1;

			linear_term[i+l] = prob.y[i];
			y[i+l] = -1;
		}

		Solver_NU s = new Solver_NU();
		s.Solve(2*l, new SVR_Q(prob,param), linear_term, y,
			alpha2, C, C, param.eps, si, param.shrinking);

		System.out.print("epsilon = "+(-si.r)+"\n");

		for(i=0;i<l;i++)
			alpha[i] = alpha2[i] - alpha2[i+l];
	}

	//
	// decision_function
	//
	static class decision_function
	{
		double[] alpha;
		double rho;
	};

	static decision_function svm_train_one(
		svm_problem prob, svm_parameter param,
		double Cp, double Cn)
	{
		double[] alpha = new double[prob.l];
		Solver.SolutionInfo si = new Solver.SolutionInfo();
		switch(param.svm_type)
		{
			case svm_parameter.C_SVC:
				solve_c_svc(prob,param,alpha,si,Cp,Cn);
				break;
			case svm_parameter.NU_SVC:
				solve_nu_svc(prob,param,alpha,si);
				break;
			case svm_parameter.ONE_CLASS:
				solve_one_class(prob,param,alpha,si);
				break;
			case svm_parameter.EPSILON_SVR:
				solve_epsilon_svr(prob,param,alpha,si);
				break;
			case svm_parameter.NU_SVR:
				solve_nu_svr(prob,param,alpha,si);
				break;
		}

		System.out.print("obj = "+si.obj+", rho = "+si.rho+"\n");

		// output SVs

		int nSV = 0;
		int nBSV = 0;
		for(int i=0;i<prob.l;i++)
		{
			if(Math.abs(alpha[i]) > 0)
			{
				++nSV;
				if(prob.y[i] > 0)
				{
					if(Math.abs(alpha[i]) >= si.upper_bound_p)
					++nBSV;
				}
				else
				{
					if(Math.abs(alpha[i]) >= si.upper_bound_n)
						++nBSV;
				}
			}
		}

		System.out.print("nSV = "+nSV+", nBSV = "+nBSV+"\n");

		decision_function f = new decision_function();
		f.alpha = alpha;
		f.rho = si.rho;
		return f;
	}

	// Platt's binary SVM Probablistic Output: an improvement from Lin et al.
	private static void sigmoid_train(int l, double[] dec_values, double[] labels,
				  double[] probAB)
	{
		double A, B;
		double prior1=0, prior0 = 0;
		int i;

		for (i=0;i<l;i++)
			if (labels[i] > 0) prior1+=1;
			else prior0+=1;

		int max_iter=100; 	// Maximal number of iterations
		double min_step=1e-10;	// Minimal step taken in line search
		double sigma=1e-3;	// For numerically strict PD of Hessian
		double eps=1e-5;
		double hiTarget=(prior1+1.0)/(prior1+2.0);
		double loTarget=1/(prior0+2.0);
		double[] t= new double[l];
		double fApB,p,q,h11,h22,h21,g1,g2,det,dA,dB,gd,stepsize;
		double newA,newB,newf,d1,d2;
		int iter;

		// Initial Point and Initial Fun Value
		A=0.0; B=Math.log((prior0+1.0)/(prior1+1.0));
		double fval = 0.0;

		for (i=0;i<l;i++)
		{
			if (labels[i]>0) t[i]=hiTarget;
			else t[i]=loTarget;
			fApB = dec_values[i]*A+B;
			if (fApB>=0)
				fval += t[i]*fApB + Math.log(1+Math.exp(-fApB));
			else
				fval += (t[i] - 1)*fApB +Math.log(1+Math.exp(fApB));
		}
		for (iter=0;iter<max_iter;iter++)
		{
			// Update Gradient and Hessian (use H' = H + sigma I)
			h11=sigma; // numerically ensures strict PD
			h22=sigma;
			h21=0.0;g1=0.0;g2=0.0;
			for (i=0;i<l;i++)
			{
				fApB = dec_values[i]*A+B;
				if (fApB >= 0)
				{
					p=Math.exp(-fApB)/(1.0+Math.exp(-fApB));
					q=1.0/(1.0+Math.exp(-fApB));
				}
				else
				{
					p=1.0/(1.0+Math.exp(fApB));
					q=Math.exp(fApB)/(1.0+Math.exp(fApB));
				}
				d2=p*q;
				h11+=dec_values[i]*dec_values[i]*d2;
				h22+=d2;
				h21+=dec_values[i]*d2;
				d1=t[i]-p;
				g1+=dec_values[i]*d1;
				g2+=d1;
			}

			// Stopping Criteria
			if (Math.abs(g1)<eps && Math.abs(g2)<eps)
				break;

			// Finding Newton direction: -inv(H') * g
			det=h11*h22-h21*h21;
			dA=-(h22*g1 - h21 * g2) / det;
			dB=-(-h21*g1+ h11 * g2) / det;
			gd=g1*dA+g2*dB;


			stepsize = 1; 		// Line Search
			while (stepsize >= min_step)
			{
				newA = A + stepsize * dA;
				newB = B + stepsize * dB;

				// New function value
				newf = 0.0;
				for (i=0;i<l;i++)
				{
					fApB = dec_values[i]*newA+newB;
					if (fApB >= 0)
						newf += t[i]*fApB + Math.log(1+Math.exp(-fApB));
					else
						newf += (t[i] - 1)*fApB +Math.log(1+Math.exp(fApB));
				}
				// Check sufficient decrease
				if (newf<fval+0.0001*stepsize*gd)
				{
					A=newA;B=newB;fval=newf;
					break;
				}
				else
					stepsize = stepsize / 2.0;
			}

			if (stepsize < min_step)
			{
				System.err.print("Line search fails in two-class probability estimates\n");
				break;
			}
		}

		if (iter>=max_iter)
			System.err.print("Reaching maximal iterations in two-class probability estimates\n");
		probAB[0]=A;probAB[1]=B;
	}

	private static double sigmoid_predict(double decision_value, double A, double B)
	{

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -