⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 softfloat.c

📁 qemu虚拟机代码
💻 C
📖 第 1 页 / 共 5 页
字号:
    aSig = extractFloat32Frac( a );    aExp = extractFloat32Exp( a );    aSign = extractFloat32Sign( a );    if ( aExp == 0xFF ) {        if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a STATUS_VAR ) );        return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );    }    if ( aExp == 0 ) {        if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );        normalizeFloat32Subnormal( aSig, &aExp, &aSig );    }    aSig |= 0x00800000;    return packFloatx80( aSign, aExp + 0x3F80, ( (bits64) aSig )<<40 );}#endif#ifdef FLOAT128/*----------------------------------------------------------------------------| Returns the result of converting the single-precision floating-point value| `a' to the double-precision floating-point format.  The conversion is| performed according to the IEC/IEEE Standard for Binary Floating-Point| Arithmetic.*----------------------------------------------------------------------------*/float128 float32_to_float128( float32 a STATUS_PARAM ){    flag aSign;    int16 aExp;    bits32 aSig;    aSig = extractFloat32Frac( a );    aExp = extractFloat32Exp( a );    aSign = extractFloat32Sign( a );    if ( aExp == 0xFF ) {        if ( aSig ) return commonNaNToFloat128( float32ToCommonNaN( a STATUS_VAR ) );        return packFloat128( aSign, 0x7FFF, 0, 0 );    }    if ( aExp == 0 ) {        if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );        normalizeFloat32Subnormal( aSig, &aExp, &aSig );        --aExp;    }    return packFloat128( aSign, aExp + 0x3F80, ( (bits64) aSig )<<25, 0 );}#endif/*----------------------------------------------------------------------------| Rounds the single-precision floating-point value `a' to an integer, and| returns the result as a single-precision floating-point value.  The| operation is performed according to the IEC/IEEE Standard for Binary| Floating-Point Arithmetic.*----------------------------------------------------------------------------*/float32 float32_round_to_int( float32 a STATUS_PARAM){    flag aSign;    int16 aExp;    bits32 lastBitMask, roundBitsMask;    int8 roundingMode;    float32 z;    aExp = extractFloat32Exp( a );    if ( 0x96 <= aExp ) {        if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) {            return propagateFloat32NaN( a, a STATUS_VAR );        }        return a;    }    if ( aExp <= 0x7E ) {        if ( (bits32) ( a<<1 ) == 0 ) return a;        STATUS(float_exception_flags) |= float_flag_inexact;        aSign = extractFloat32Sign( a );        switch ( STATUS(float_rounding_mode) ) {         case float_round_nearest_even:            if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) {                return packFloat32( aSign, 0x7F, 0 );            }            break;         case float_round_down:            return aSign ? 0xBF800000 : 0;         case float_round_up:            return aSign ? 0x80000000 : 0x3F800000;        }        return packFloat32( aSign, 0, 0 );    }    lastBitMask = 1;    lastBitMask <<= 0x96 - aExp;    roundBitsMask = lastBitMask - 1;    z = a;    roundingMode = STATUS(float_rounding_mode);    if ( roundingMode == float_round_nearest_even ) {        z += lastBitMask>>1;        if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;    }    else if ( roundingMode != float_round_to_zero ) {        if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) {            z += roundBitsMask;        }    }    z &= ~ roundBitsMask;    if ( z != a ) STATUS(float_exception_flags) |= float_flag_inexact;    return z;}/*----------------------------------------------------------------------------| Returns the result of adding the absolute values of the single-precision| floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated| before being returned.  `zSign' is ignored if the result is a NaN.| The addition is performed according to the IEC/IEEE Standard for Binary| Floating-Point Arithmetic.*----------------------------------------------------------------------------*/static float32 addFloat32Sigs( float32 a, float32 b, flag zSign STATUS_PARAM){    int16 aExp, bExp, zExp;    bits32 aSig, bSig, zSig;    int16 expDiff;    aSig = extractFloat32Frac( a );    aExp = extractFloat32Exp( a );    bSig = extractFloat32Frac( b );    bExp = extractFloat32Exp( b );    expDiff = aExp - bExp;    aSig <<= 6;    bSig <<= 6;    if ( 0 < expDiff ) {        if ( aExp == 0xFF ) {            if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR );            return a;        }        if ( bExp == 0 ) {            --expDiff;        }        else {            bSig |= 0x20000000;        }        shift32RightJamming( bSig, expDiff, &bSig );        zExp = aExp;    }    else if ( expDiff < 0 ) {        if ( bExp == 0xFF ) {            if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );            return packFloat32( zSign, 0xFF, 0 );        }        if ( aExp == 0 ) {            ++expDiff;        }        else {            aSig |= 0x20000000;        }        shift32RightJamming( aSig, - expDiff, &aSig );        zExp = bExp;    }    else {        if ( aExp == 0xFF ) {            if ( aSig | bSig ) return propagateFloat32NaN( a, b STATUS_VAR );            return a;        }        if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 );        zSig = 0x40000000 + aSig + bSig;        zExp = aExp;        goto roundAndPack;    }    aSig |= 0x20000000;    zSig = ( aSig + bSig )<<1;    --zExp;    if ( (sbits32) zSig < 0 ) {        zSig = aSig + bSig;        ++zExp;    } roundAndPack:    return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR );}/*----------------------------------------------------------------------------| Returns the result of subtracting the absolute values of the single-| precision floating-point values `a' and `b'.  If `zSign' is 1, the| difference is negated before being returned.  `zSign' is ignored if the| result is a NaN.  The subtraction is performed according to the IEC/IEEE| Standard for Binary Floating-Point Arithmetic.*----------------------------------------------------------------------------*/static float32 subFloat32Sigs( float32 a, float32 b, flag zSign STATUS_PARAM){    int16 aExp, bExp, zExp;    bits32 aSig, bSig, zSig;    int16 expDiff;    aSig = extractFloat32Frac( a );    aExp = extractFloat32Exp( a );    bSig = extractFloat32Frac( b );    bExp = extractFloat32Exp( b );    expDiff = aExp - bExp;    aSig <<= 7;    bSig <<= 7;    if ( 0 < expDiff ) goto aExpBigger;    if ( expDiff < 0 ) goto bExpBigger;    if ( aExp == 0xFF ) {        if ( aSig | bSig ) return propagateFloat32NaN( a, b STATUS_VAR );        float_raise( float_flag_invalid STATUS_VAR);        return float32_default_nan;    }    if ( aExp == 0 ) {        aExp = 1;        bExp = 1;    }    if ( bSig < aSig ) goto aBigger;    if ( aSig < bSig ) goto bBigger;    return packFloat32( STATUS(float_rounding_mode) == float_round_down, 0, 0 ); bExpBigger:    if ( bExp == 0xFF ) {        if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );        return packFloat32( zSign ^ 1, 0xFF, 0 );    }    if ( aExp == 0 ) {        ++expDiff;    }    else {        aSig |= 0x40000000;    }    shift32RightJamming( aSig, - expDiff, &aSig );    bSig |= 0x40000000; bBigger:    zSig = bSig - aSig;    zExp = bExp;    zSign ^= 1;    goto normalizeRoundAndPack; aExpBigger:    if ( aExp == 0xFF ) {        if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR );        return a;    }    if ( bExp == 0 ) {        --expDiff;    }    else {        bSig |= 0x40000000;    }    shift32RightJamming( bSig, expDiff, &bSig );    aSig |= 0x40000000; aBigger:    zSig = aSig - bSig;    zExp = aExp; normalizeRoundAndPack:    --zExp;    return normalizeRoundAndPackFloat32( zSign, zExp, zSig STATUS_VAR );}/*----------------------------------------------------------------------------| Returns the result of adding the single-precision floating-point values `a'| and `b'.  The operation is performed according to the IEC/IEEE Standard for| Binary Floating-Point Arithmetic.*----------------------------------------------------------------------------*/float32 float32_add( float32 a, float32 b STATUS_PARAM ){    flag aSign, bSign;    aSign = extractFloat32Sign( a );    bSign = extractFloat32Sign( b );    if ( aSign == bSign ) {        return addFloat32Sigs( a, b, aSign STATUS_VAR);    }    else {        return subFloat32Sigs( a, b, aSign STATUS_VAR );    }}/*----------------------------------------------------------------------------| Returns the result of subtracting the single-precision floating-point values| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard| for Binary Floating-Point Arithmetic.*----------------------------------------------------------------------------*/float32 float32_sub( float32 a, float32 b STATUS_PARAM ){    flag aSign, bSign;    aSign = extractFloat32Sign( a );    bSign = extractFloat32Sign( b );    if ( aSign == bSign ) {        return subFloat32Sigs( a, b, aSign STATUS_VAR );    }    else {        return addFloat32Sigs( a, b, aSign STATUS_VAR );    }}/*----------------------------------------------------------------------------| Returns the result of multiplying the single-precision floating-point values| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard| for Binary Floating-Point Arithmetic.*----------------------------------------------------------------------------*/float32 float32_mul( float32 a, float32 b STATUS_PARAM ){    flag aSign, bSign, zSign;    int16 aExp, bExp, zExp;    bits32 aSig, bSig;    bits64 zSig64;    bits32 zSig;    aSig = extractFloat32Frac( a );    aExp = extractFloat32Exp( a );    aSign = extractFloat32Sign( a );    bSig = extractFloat32Frac( b );    bExp = extractFloat32Exp( b );    bSign = extractFloat32Sign( b );    zSign = aSign ^ bSign;    if ( aExp == 0xFF ) {        if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {            return propagateFloat32NaN( a, b STATUS_VAR );        }        if ( ( bExp | bSig ) == 0 ) {            float_raise( float_flag_invalid STATUS_VAR);            return float32_default_nan;        }        return packFloat32( zSign, 0xFF, 0 );    }    if ( bExp == 0xFF ) {        if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );        if ( ( aExp | aSig ) == 0 ) {            float_raise( float_flag_invalid STATUS_VAR);            return float32_default_nan;        }        return packFloat32( zSign, 0xFF, 0 );    }    if ( aExp == 0 ) {        if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );        normalizeFloat32Subnormal( aSig, &aExp, &aSig );    }    if ( bExp == 0 ) {        if ( bSig == 0 ) return packFloat32( zSign, 0, 0 );        normalizeFloat32Subnormal( bSig, &bExp, &bSig );    }    zExp = aExp + bExp - 0x7F;    aSig = ( aSig | 0x00800000 )<<7;    bSig = ( bSig | 0x00800000 )<<8;    shift64RightJamming( ( (bits64) aSig ) * bSig, 32, &zSig64 );    zSig = zSig64;    if ( 0 <= (sbits32) ( zSig<<1 ) ) {        zSig <<= 1;        --zExp;    }    return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR );}/*-----------

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -