⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 softfloat.c

📁 qemu虚拟机代码
💻 C
📖 第 1 页 / 共 5 页
字号:
/*----------------------------------------------------------------------------| Returns the result of converting the 32-bit two's complement integer `a'| to the extended double-precision floating-point format.  The conversion| is performed according to the IEC/IEEE Standard for Binary Floating-Point| Arithmetic.*----------------------------------------------------------------------------*/floatx80 int32_to_floatx80( int32 a STATUS_PARAM ){    flag zSign;    uint32 absA;    int8 shiftCount;    bits64 zSig;    if ( a == 0 ) return packFloatx80( 0, 0, 0 );    zSign = ( a < 0 );    absA = zSign ? - a : a;    shiftCount = countLeadingZeros32( absA ) + 32;    zSig = absA;    return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );}#endif#ifdef FLOAT128/*----------------------------------------------------------------------------| Returns the result of converting the 32-bit two's complement integer `a' to| the quadruple-precision floating-point format.  The conversion is performed| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.*----------------------------------------------------------------------------*/float128 int32_to_float128( int32 a STATUS_PARAM ){    flag zSign;    uint32 absA;    int8 shiftCount;    bits64 zSig0;    if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );    zSign = ( a < 0 );    absA = zSign ? - a : a;    shiftCount = countLeadingZeros32( absA ) + 17;    zSig0 = absA;    return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 );}#endif/*----------------------------------------------------------------------------| Returns the result of converting the 64-bit two's complement integer `a'| to the single-precision floating-point format.  The conversion is performed| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.*----------------------------------------------------------------------------*/float32 int64_to_float32( int64 a STATUS_PARAM ){    flag zSign;    uint64 absA;    int8 shiftCount;    if ( a == 0 ) return 0;    zSign = ( a < 0 );    absA = zSign ? - a : a;    shiftCount = countLeadingZeros64( absA ) - 40;    if ( 0 <= shiftCount ) {        return packFloat32( zSign, 0x95 - shiftCount, absA<<shiftCount );    }    else {        shiftCount += 7;        if ( shiftCount < 0 ) {            shift64RightJamming( absA, - shiftCount, &absA );        }        else {            absA <<= shiftCount;        }        return roundAndPackFloat32( zSign, 0x9C - shiftCount, absA STATUS_VAR );    }}/*----------------------------------------------------------------------------| Returns the result of converting the 64-bit two's complement integer `a'| to the double-precision floating-point format.  The conversion is performed| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.*----------------------------------------------------------------------------*/float64 int64_to_float64( int64 a STATUS_PARAM ){    flag zSign;    if ( a == 0 ) return 0;    if ( a == (sbits64) LIT64( 0x8000000000000000 ) ) {        return packFloat64( 1, 0x43E, 0 );    }    zSign = ( a < 0 );    return normalizeRoundAndPackFloat64( zSign, 0x43C, zSign ? - a : a STATUS_VAR );}#ifdef FLOATX80/*----------------------------------------------------------------------------| Returns the result of converting the 64-bit two's complement integer `a'| to the extended double-precision floating-point format.  The conversion| is performed according to the IEC/IEEE Standard for Binary Floating-Point| Arithmetic.*----------------------------------------------------------------------------*/floatx80 int64_to_floatx80( int64 a STATUS_PARAM ){    flag zSign;    uint64 absA;    int8 shiftCount;    if ( a == 0 ) return packFloatx80( 0, 0, 0 );    zSign = ( a < 0 );    absA = zSign ? - a : a;    shiftCount = countLeadingZeros64( absA );    return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount );}#endif#ifdef FLOAT128/*----------------------------------------------------------------------------| Returns the result of converting the 64-bit two's complement integer `a' to| the quadruple-precision floating-point format.  The conversion is performed| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.*----------------------------------------------------------------------------*/float128 int64_to_float128( int64 a STATUS_PARAM ){    flag zSign;    uint64 absA;    int8 shiftCount;    int32 zExp;    bits64 zSig0, zSig1;    if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );    zSign = ( a < 0 );    absA = zSign ? - a : a;    shiftCount = countLeadingZeros64( absA ) + 49;    zExp = 0x406E - shiftCount;    if ( 64 <= shiftCount ) {        zSig1 = 0;        zSig0 = absA;        shiftCount -= 64;    }    else {        zSig1 = absA;        zSig0 = 0;    }    shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );    return packFloat128( zSign, zExp, zSig0, zSig1 );}#endif/*----------------------------------------------------------------------------| Returns the result of converting the single-precision floating-point value| `a' to the 32-bit two's complement integer format.  The conversion is| performed according to the IEC/IEEE Standard for Binary Floating-Point| Arithmetic---which means in particular that the conversion is rounded| according to the current rounding mode.  If `a' is a NaN, the largest| positive integer is returned.  Otherwise, if the conversion overflows, the| largest integer with the same sign as `a' is returned.*----------------------------------------------------------------------------*/int32 float32_to_int32( float32 a STATUS_PARAM ){    flag aSign;    int16 aExp, shiftCount;    bits32 aSig;    bits64 aSig64;    aSig = extractFloat32Frac( a );    aExp = extractFloat32Exp( a );    aSign = extractFloat32Sign( a );    if ( ( aExp == 0xFF ) && aSig ) aSign = 0;    if ( aExp ) aSig |= 0x00800000;    shiftCount = 0xAF - aExp;    aSig64 = aSig;    aSig64 <<= 32;    if ( 0 < shiftCount ) shift64RightJamming( aSig64, shiftCount, &aSig64 );    return roundAndPackInt32( aSign, aSig64 STATUS_VAR );}/*----------------------------------------------------------------------------| Returns the result of converting the single-precision floating-point value| `a' to the 32-bit two's complement integer format.  The conversion is| performed according to the IEC/IEEE Standard for Binary Floating-Point| Arithmetic, except that the conversion is always rounded toward zero.| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if| the conversion overflows, the largest integer with the same sign as `a' is| returned.*----------------------------------------------------------------------------*/int32 float32_to_int32_round_to_zero( float32 a STATUS_PARAM ){    flag aSign;    int16 aExp, shiftCount;    bits32 aSig;    int32 z;    aSig = extractFloat32Frac( a );    aExp = extractFloat32Exp( a );    aSign = extractFloat32Sign( a );    shiftCount = aExp - 0x9E;    if ( 0 <= shiftCount ) {        if ( a != 0xCF000000 ) {            float_raise( float_flag_invalid STATUS_VAR);            if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;        }        return (sbits32) 0x80000000;    }    else if ( aExp <= 0x7E ) {        if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;        return 0;    }    aSig = ( aSig | 0x00800000 )<<8;    z = aSig>>( - shiftCount );    if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) {        STATUS(float_exception_flags) |= float_flag_inexact;    }    if ( aSign ) z = - z;    return z;}/*----------------------------------------------------------------------------| Returns the result of converting the single-precision floating-point value| `a' to the 64-bit two's complement integer format.  The conversion is| performed according to the IEC/IEEE Standard for Binary Floating-Point| Arithmetic---which means in particular that the conversion is rounded| according to the current rounding mode.  If `a' is a NaN, the largest| positive integer is returned.  Otherwise, if the conversion overflows, the| largest integer with the same sign as `a' is returned.*----------------------------------------------------------------------------*/int64 float32_to_int64( float32 a STATUS_PARAM ){    flag aSign;    int16 aExp, shiftCount;    bits32 aSig;    bits64 aSig64, aSigExtra;    aSig = extractFloat32Frac( a );    aExp = extractFloat32Exp( a );    aSign = extractFloat32Sign( a );    shiftCount = 0xBE - aExp;    if ( shiftCount < 0 ) {        float_raise( float_flag_invalid STATUS_VAR);        if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {            return LIT64( 0x7FFFFFFFFFFFFFFF );        }        return (sbits64) LIT64( 0x8000000000000000 );    }    if ( aExp ) aSig |= 0x00800000;    aSig64 = aSig;    aSig64 <<= 40;    shift64ExtraRightJamming( aSig64, 0, shiftCount, &aSig64, &aSigExtra );    return roundAndPackInt64( aSign, aSig64, aSigExtra STATUS_VAR );}/*----------------------------------------------------------------------------| Returns the result of converting the single-precision floating-point value| `a' to the 64-bit two's complement integer format.  The conversion is| performed according to the IEC/IEEE Standard for Binary Floating-Point| Arithmetic, except that the conversion is always rounded toward zero.  If| `a' is a NaN, the largest positive integer is returned.  Otherwise, if the| conversion overflows, the largest integer with the same sign as `a' is| returned.*----------------------------------------------------------------------------*/int64 float32_to_int64_round_to_zero( float32 a STATUS_PARAM ){    flag aSign;    int16 aExp, shiftCount;    bits32 aSig;    bits64 aSig64;    int64 z;    aSig = extractFloat32Frac( a );    aExp = extractFloat32Exp( a );    aSign = extractFloat32Sign( a );    shiftCount = aExp - 0xBE;    if ( 0 <= shiftCount ) {        if ( a != 0xDF000000 ) {            float_raise( float_flag_invalid STATUS_VAR);            if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {                return LIT64( 0x7FFFFFFFFFFFFFFF );            }        }        return (sbits64) LIT64( 0x8000000000000000 );    }    else if ( aExp <= 0x7E ) {        if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;        return 0;    }    aSig64 = aSig | 0x00800000;    aSig64 <<= 40;    z = aSig64>>( - shiftCount );    if ( (bits64) ( aSig64<<( shiftCount & 63 ) ) ) {        STATUS(float_exception_flags) |= float_flag_inexact;    }    if ( aSign ) z = - z;    return z;}/*----------------------------------------------------------------------------| Returns the result of converting the single-precision floating-point value| `a' to the double-precision floating-point format.  The conversion is| performed according to the IEC/IEEE Standard for Binary Floating-Point| Arithmetic.*----------------------------------------------------------------------------*/float64 float32_to_float64( float32 a STATUS_PARAM ){    flag aSign;    int16 aExp;    bits32 aSig;    aSig = extractFloat32Frac( a );    aExp = extractFloat32Exp( a );    aSign = extractFloat32Sign( a );    if ( aExp == 0xFF ) {        if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a STATUS_VAR ));        return packFloat64( aSign, 0x7FF, 0 );    }    if ( aExp == 0 ) {        if ( aSig == 0 ) return packFloat64( aSign, 0, 0 );        normalizeFloat32Subnormal( aSig, &aExp, &aSig );        --aExp;    }    return packFloat64( aSign, aExp + 0x380, ( (bits64) aSig )<<29 );}#ifdef FLOATX80/*----------------------------------------------------------------------------| Returns the result of converting the single-precision floating-point value| `a' to the extended double-precision floating-point format.  The conversion| is performed according to the IEC/IEEE Standard for Binary Floating-Point| Arithmetic.*----------------------------------------------------------------------------*/floatx80 float32_to_floatx80( float32 a STATUS_PARAM ){    flag aSign;    int16 aExp;    bits32 aSig;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -