⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 softfloat.c

📁 qemu虚拟机代码
💻 C
📖 第 1 页 / 共 5 页
字号:
    return a>>63;}/*----------------------------------------------------------------------------| Normalizes the subnormal double-precision floating-point value represented| by the denormalized significand `aSig'.  The normalized exponent and| significand are stored at the locations pointed to by `zExpPtr' and| `zSigPtr', respectively.*----------------------------------------------------------------------------*/static void normalizeFloat64Subnormal( bits64 aSig, int16 *zExpPtr, bits64 *zSigPtr ){    int8 shiftCount;    shiftCount = countLeadingZeros64( aSig ) - 11;    *zSigPtr = aSig<<shiftCount;    *zExpPtr = 1 - shiftCount;}/*----------------------------------------------------------------------------| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a| double-precision floating-point value, returning the result.  After being| shifted into the proper positions, the three fields are simply added| together to form the result.  This means that any integer portion of `zSig'| will be added into the exponent.  Since a properly normalized significand| will have an integer portion equal to 1, the `zExp' input should be 1 less| than the desired result exponent whenever `zSig' is a complete, normalized| significand.*----------------------------------------------------------------------------*/INLINE float64 packFloat64( flag zSign, int16 zExp, bits64 zSig ){    return ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<52 ) + zSig;}/*----------------------------------------------------------------------------| Takes an abstract floating-point value having sign `zSign', exponent `zExp',| and significand `zSig', and returns the proper double-precision floating-| point value corresponding to the abstract input.  Ordinarily, the abstract| value is simply rounded and packed into the double-precision format, with| the inexact exception raised if the abstract input cannot be represented| exactly.  However, if the abstract value is too large, the overflow and| inexact exceptions are raised and an infinity or maximal finite value is| returned.  If the abstract value is too small, the input value is rounded| to a subnormal number, and the underflow and inexact exceptions are raised| if the abstract input cannot be represented exactly as a subnormal double-| precision floating-point number.|     The input significand `zSig' has its binary point between bits 62| and 61, which is 10 bits to the left of the usual location.  This shifted| significand must be normalized or smaller.  If `zSig' is not normalized,| `zExp' must be 0; in that case, the result returned is a subnormal number,| and it must not require rounding.  In the usual case that `zSig' is| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.| The handling of underflow and overflow follows the IEC/IEEE Standard for| Binary Floating-Point Arithmetic.*----------------------------------------------------------------------------*/static float64 roundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig STATUS_PARAM){    int8 roundingMode;    flag roundNearestEven;    int16 roundIncrement, roundBits;    flag isTiny;    roundingMode = STATUS(float_rounding_mode);    roundNearestEven = ( roundingMode == float_round_nearest_even );    roundIncrement = 0x200;    if ( ! roundNearestEven ) {        if ( roundingMode == float_round_to_zero ) {            roundIncrement = 0;        }        else {            roundIncrement = 0x3FF;            if ( zSign ) {                if ( roundingMode == float_round_up ) roundIncrement = 0;            }            else {                if ( roundingMode == float_round_down ) roundIncrement = 0;            }        }    }    roundBits = zSig & 0x3FF;    if ( 0x7FD <= (bits16) zExp ) {        if (    ( 0x7FD < zExp )             || (    ( zExp == 0x7FD )                  && ( (sbits64) ( zSig + roundIncrement ) < 0 ) )           ) {            float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);            return packFloat64( zSign, 0x7FF, 0 ) - ( roundIncrement == 0 );        }        if ( zExp < 0 ) {            isTiny =                   ( STATUS(float_detect_tininess) == float_tininess_before_rounding )                || ( zExp < -1 )                || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );            shift64RightJamming( zSig, - zExp, &zSig );            zExp = 0;            roundBits = zSig & 0x3FF;            if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR);        }    }    if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;    zSig = ( zSig + roundIncrement )>>10;    zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );    if ( zSig == 0 ) zExp = 0;    return packFloat64( zSign, zExp, zSig );}/*----------------------------------------------------------------------------| Takes an abstract floating-point value having sign `zSign', exponent `zExp',| and significand `zSig', and returns the proper double-precision floating-| point value corresponding to the abstract input.  This routine is just like| `roundAndPackFloat64' except that `zSig' does not have to be normalized.| Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''| floating-point exponent.*----------------------------------------------------------------------------*/static float64 normalizeRoundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig STATUS_PARAM){    int8 shiftCount;    shiftCount = countLeadingZeros64( zSig ) - 1;    return roundAndPackFloat64( zSign, zExp - shiftCount, zSig<<shiftCount STATUS_VAR);}#ifdef FLOATX80/*----------------------------------------------------------------------------| Returns the fraction bits of the extended double-precision floating-point| value `a'.*----------------------------------------------------------------------------*/INLINE bits64 extractFloatx80Frac( floatx80 a ){    return a.low;}/*----------------------------------------------------------------------------| Returns the exponent bits of the extended double-precision floating-point| value `a'.*----------------------------------------------------------------------------*/INLINE int32 extractFloatx80Exp( floatx80 a ){    return a.high & 0x7FFF;}/*----------------------------------------------------------------------------| Returns the sign bit of the extended double-precision floating-point value| `a'.*----------------------------------------------------------------------------*/INLINE flag extractFloatx80Sign( floatx80 a ){    return a.high>>15;}/*----------------------------------------------------------------------------| Normalizes the subnormal extended double-precision floating-point value| represented by the denormalized significand `aSig'.  The normalized exponent| and significand are stored at the locations pointed to by `zExpPtr' and| `zSigPtr', respectively.*----------------------------------------------------------------------------*/static void normalizeFloatx80Subnormal( bits64 aSig, int32 *zExpPtr, bits64 *zSigPtr ){    int8 shiftCount;    shiftCount = countLeadingZeros64( aSig );    *zSigPtr = aSig<<shiftCount;    *zExpPtr = 1 - shiftCount;}/*----------------------------------------------------------------------------| Packs the sign `zSign', exponent `zExp', and significand `zSig' into an| extended double-precision floating-point value, returning the result.*----------------------------------------------------------------------------*/INLINE floatx80 packFloatx80( flag zSign, int32 zExp, bits64 zSig ){    floatx80 z;    z.low = zSig;    z.high = ( ( (bits16) zSign )<<15 ) + zExp;    return z;}/*----------------------------------------------------------------------------| Takes an abstract floating-point value having sign `zSign', exponent `zExp',| and extended significand formed by the concatenation of `zSig0' and `zSig1',| and returns the proper extended double-precision floating-point value| corresponding to the abstract input.  Ordinarily, the abstract value is| rounded and packed into the extended double-precision format, with the| inexact exception raised if the abstract input cannot be represented| exactly.  However, if the abstract value is too large, the overflow and| inexact exceptions are raised and an infinity or maximal finite value is| returned.  If the abstract value is too small, the input value is rounded to| a subnormal number, and the underflow and inexact exceptions are raised if| the abstract input cannot be represented exactly as a subnormal extended| double-precision floating-point number.|     If `roundingPrecision' is 32 or 64, the result is rounded to the same| number of bits as single or double precision, respectively.  Otherwise, the| result is rounded to the full precision of the extended double-precision| format.|     The input significand must be normalized or smaller.  If the input| significand is not normalized, `zExp' must be 0; in that case, the result| returned is a subnormal number, and it must not require rounding.  The| handling of underflow and overflow follows the IEC/IEEE Standard for Binary| Floating-Point Arithmetic.*----------------------------------------------------------------------------*/static floatx80 roundAndPackFloatx80(     int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 STATUS_PARAM){    int8 roundingMode;    flag roundNearestEven, increment, isTiny;    int64 roundIncrement, roundMask, roundBits;    roundingMode = STATUS(float_rounding_mode);    roundNearestEven = ( roundingMode == float_round_nearest_even );    if ( roundingPrecision == 80 ) goto precision80;    if ( roundingPrecision == 64 ) {        roundIncrement = LIT64( 0x0000000000000400 );        roundMask = LIT64( 0x00000000000007FF );    }    else if ( roundingPrecision == 32 ) {        roundIncrement = LIT64( 0x0000008000000000 );        roundMask = LIT64( 0x000000FFFFFFFFFF );    }    else {        goto precision80;    }    zSig0 |= ( zSig1 != 0 );    if ( ! roundNearestEven ) {        if ( roundingMode == float_round_to_zero ) {            roundIncrement = 0;        }        else {            roundIncrement = roundMask;            if ( zSign ) {                if ( roundingMode == float_round_up ) roundIncrement = 0;            }            else {                if ( roundingMode == float_round_down ) roundIncrement = 0;            }        }    }    roundBits = zSig0 & roundMask;    if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {        if (    ( 0x7FFE < zExp )             || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )           ) {            goto overflow;        }        if ( zExp <= 0 ) {            isTiny =                   ( STATUS(float_detect_tininess) == float_tininess_before_rounding )                || ( zExp < 0 )                || ( zSig0 <= zSig0 + roundIncrement );            shift64RightJamming( zSig0, 1 - zExp, &zSig0 );            zExp = 0;            roundBits = zSig0 & roundMask;            if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR);            if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;            zSig0 += roundIncrement;            if ( (sbits64) zSig0 < 0 ) zExp = 1;            roundIncrement = roundMask + 1;            if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {                roundMask |= roundIncrement;            }            zSig0 &= ~ roundMask;            return packFloatx80( zSign, zExp, zSig0 );        }    }    if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;    zSig0 += roundIncrement;    if ( zSig0 < roundIncrement ) {        ++zExp;        zSig0 = LIT64( 0x8000000000000000 );    }    roundIncrement = roundMask + 1;    if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {        roundMask |= roundIncrement;    }    zSig0 &= ~ roundMask;    if ( zSig0 == 0 ) zExp = 0;    return packFloatx80( zSign, zExp, zSig0 ); precision80:    increment = ( (sbits64) zSig1 < 0 );    if ( ! roundNearestEven ) {        if ( roundingMode == float_round_to_zero ) {            increment = 0;        }        else {            if ( zSign ) {                increment = ( roundingMode == float_round_down ) && zSig1;            }            else {                increment = ( roundingMode == float_round_up ) && zSig1;            }        }    }    if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {        if (    ( 0x7FFE < zExp )             || (    ( zExp == 0x7FFE )                  && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )                  && increment                )           ) {            roundMask = 0; overflow:            float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);            if (    ( roundingMode == float_round_to_zero )                 || ( zSign && ( roundingMode == float_round_up ) )                 || ( ! zSign && ( roundingMode == float_round_down ) )               ) {                return packFloatx80( zSign, 0x7FFE, ~ roundMask );            }            return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );        }        if ( zExp <= 0 ) {            isTiny =                   ( STATUS(float_detect_tininess) == float_tininess_before_rounding )                || ( zExp < 0 )                || ! increment                || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );            shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );            zExp = 0;            if ( isTiny && zSig1 ) float_raise( float_flag_underflow STATUS_VAR);            if ( zSig1 ) STATUS(float_exception_flags) |= float_flag_inexact;            if ( roundNearestEven ) {                increment = ( (sbits64) zSig1 < 0 );            }            else {                if ( zSign ) {                    increment = ( roundingMode == float_round_down ) && zSig1;                }                else {                    increment = ( roundingMode == float_round_up ) && zSig1;                }            }            if ( increment ) {

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -