⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lance.c

📁 qemu虚拟机代码
💻 C
字号:
/* * QEMU Lance emulation *  * Copyright (c) 2003-2005 Fabrice Bellard *  * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */#include "vl.h"/* debug LANCE card *///#define DEBUG_LANCE#ifdef DEBUG_LANCE#define DPRINTF(fmt, args...) \do { printf("LANCE: " fmt , ##args); } while (0)#else#define DPRINTF(fmt, args...)#endif#ifndef LANCE_LOG_TX_BUFFERS#define LANCE_LOG_TX_BUFFERS 4#define LANCE_LOG_RX_BUFFERS 4#endif#define LE_CSR0 0#define LE_CSR1 1#define LE_CSR2 2#define LE_CSR3 3#define LE_NREGS (LE_CSR3 + 1)#define LE_MAXREG LE_CSR3#define LE_RDP  0#define LE_RAP  1#define LE_MO_PROM      0x8000  /* Enable promiscuous mode */#define	LE_C0_ERR	0x8000	/* Error: set if BAB, SQE, MISS or ME is set */#define	LE_C0_BABL	0x4000	/* BAB:  Babble: tx timeout. */#define	LE_C0_CERR	0x2000	/* SQE:  Signal quality error */#define	LE_C0_MISS	0x1000	/* MISS: Missed a packet */#define	LE_C0_MERR	0x0800	/* ME:   Memory error */#define	LE_C0_RINT	0x0400	/* Received interrupt */#define	LE_C0_TINT	0x0200	/* Transmitter Interrupt */#define	LE_C0_IDON	0x0100	/* IFIN: Init finished. */#define	LE_C0_INTR	0x0080	/* Interrupt or error */#define	LE_C0_INEA	0x0040	/* Interrupt enable */#define	LE_C0_RXON	0x0020	/* Receiver on */#define	LE_C0_TXON	0x0010	/* Transmitter on */#define	LE_C0_TDMD	0x0008	/* Transmitter demand */#define	LE_C0_STOP	0x0004	/* Stop the card */#define	LE_C0_STRT	0x0002	/* Start the card */#define	LE_C0_INIT	0x0001	/* Init the card */#define	LE_C3_BSWP	0x4     /* SWAP */#define	LE_C3_ACON	0x2	/* ALE Control */#define	LE_C3_BCON	0x1	/* Byte control *//* Receive message descriptor 1 */#define LE_R1_OWN       0x80    /* Who owns the entry */#define LE_R1_ERR       0x40    /* Error: if FRA, OFL, CRC or BUF is set */#define LE_R1_FRA       0x20    /* FRA: Frame error */#define LE_R1_OFL       0x10    /* OFL: Frame overflow */#define LE_R1_CRC       0x08    /* CRC error */#define LE_R1_BUF       0x04    /* BUF: Buffer error */#define LE_R1_SOP       0x02    /* Start of packet */#define LE_R1_EOP       0x01    /* End of packet */#define LE_R1_POK       0x03    /* Packet is complete: SOP + EOP */#define LE_T1_OWN       0x80    /* Lance owns the packet */#define LE_T1_ERR       0x40    /* Error summary */#define LE_T1_EMORE     0x10    /* Error: more than one retry needed */#define LE_T1_EONE      0x08    /* Error: one retry needed */#define LE_T1_EDEF      0x04    /* Error: deferred */#define LE_T1_SOP       0x02    /* Start of packet */#define LE_T1_EOP       0x01    /* End of packet */#define LE_T1_POK	0x03	/* Packet is complete: SOP + EOP */#define LE_T3_BUF       0x8000  /* Buffer error */#define LE_T3_UFL       0x4000  /* Error underflow */#define LE_T3_LCOL      0x1000  /* Error late collision */#define LE_T3_CLOS      0x0800  /* Error carrier loss */#define LE_T3_RTY       0x0400  /* Error retry */#define LE_T3_TDR       0x03ff  /* Time Domain Reflectometry counter */#define TX_RING_SIZE			(1 << (LANCE_LOG_TX_BUFFERS))#define TX_RING_MOD_MASK		(TX_RING_SIZE - 1)#define TX_RING_LEN_BITS		((LANCE_LOG_TX_BUFFERS) << 29)#define RX_RING_SIZE			(1 << (LANCE_LOG_RX_BUFFERS))#define RX_RING_MOD_MASK		(RX_RING_SIZE - 1)#define RX_RING_LEN_BITS		((LANCE_LOG_RX_BUFFERS) << 29)#define PKT_BUF_SZ		1544#define RX_BUFF_SIZE            PKT_BUF_SZ#define TX_BUFF_SIZE            PKT_BUF_SZstruct lance_rx_desc {	unsigned short rmd0;        /* low address of packet */	unsigned char  rmd1_bits;   /* descriptor bits */	unsigned char  rmd1_hadr;   /* high address of packet */	short    length;    	    /* This length is 2s complement (negative)!				     * Buffer length				     */	unsigned short mblength;    /* This is the actual number of bytes received */};struct lance_tx_desc {	unsigned short tmd0;        /* low address of packet */	unsigned char  tmd1_bits;   /* descriptor bits */	unsigned char  tmd1_hadr;   /* high address of packet */	short length;          	    /* Length is 2s complement (negative)! */	unsigned short misc;};/* The LANCE initialization block, described in databook. *//* On the Sparc, this block should be on a DMA region     */struct lance_init_block {	unsigned short mode;		/* Pre-set mode (reg. 15) */	unsigned char phys_addr[6];     /* Physical ethernet address */	unsigned filter[2];		/* Multicast filter. */	/* Receive and transmit ring base, along with extra bits. */	unsigned short rx_ptr;		/* receive descriptor addr */	unsigned short rx_len;		/* receive len and high addr */	unsigned short tx_ptr;		/* transmit descriptor addr */	unsigned short tx_len;		/* transmit len and high addr */    	/* The Tx and Rx ring entries must aligned on 8-byte boundaries. */	struct lance_rx_desc brx_ring[RX_RING_SIZE];	struct lance_tx_desc btx_ring[TX_RING_SIZE];    	char   tx_buf [TX_RING_SIZE][TX_BUFF_SIZE];	char   pad[2];			/* align rx_buf for copy_and_sum(). */	char   rx_buf [RX_RING_SIZE][RX_BUFF_SIZE];};#define LEDMA_REGS 4#define LEDMA_MAXADDR (LEDMA_REGS * 4 - 1)typedef struct LANCEState {    VLANClientState *vc;    uint8_t macaddr[6]; /* init mac address */    uint32_t leptr;    uint16_t addr;    uint16_t regs[LE_NREGS];    uint8_t phys[6]; /* mac address */    int irq;    unsigned int rxptr, txptr;    uint32_t ledmaregs[LEDMA_REGS];} LANCEState;static void lance_send(void *opaque);static void lance_reset(void *opaque){    LANCEState *s = opaque;    memcpy(s->phys, s->macaddr, 6);    s->rxptr = 0;    s->txptr = 0;    memset(s->regs, 0, LE_NREGS * 2);    s->regs[LE_CSR0] = LE_C0_STOP;    memset(s->ledmaregs, 0, LEDMA_REGS * 4);}static uint32_t lance_mem_readw(void *opaque, target_phys_addr_t addr){    LANCEState *s = opaque;    uint32_t saddr;    saddr = addr & LE_MAXREG;    switch (saddr >> 1) {    case LE_RDP:	DPRINTF("read dreg[%d] = %4.4x\n", s->addr, s->regs[s->addr]);	return s->regs[s->addr];    case LE_RAP:	DPRINTF("read areg = %4.4x\n", s->addr);	return s->addr;    default:	DPRINTF("read unknown(%d)\n", saddr>>1);	break;    }    return 0;}static void lance_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val){    LANCEState *s = opaque;    uint32_t saddr;    uint16_t reg;    saddr = addr & LE_MAXREG;    switch (saddr >> 1) {    case LE_RDP:	DPRINTF("write dreg[%d] = %4.4x\n", s->addr, val);	switch(s->addr) {	case LE_CSR0:	    if (val & LE_C0_STOP) {		s->regs[LE_CSR0] = LE_C0_STOP;		break;	    }	    reg = s->regs[LE_CSR0];	    // 1 = clear for some bits	    reg &= ~(val & 0x7f00);	    // generated bits	    reg &= ~(LE_C0_ERR | LE_C0_INTR);	    if (reg & 0x7100)		reg |= LE_C0_ERR;	    if (reg & 0x7f00)		reg |= LE_C0_INTR;	    // direct bit	    reg &= ~LE_C0_INEA;	    reg |= val & LE_C0_INEA;	    // exclusive bits	    if (val & LE_C0_INIT) {		reg |= LE_C0_IDON | LE_C0_INIT;		reg &= ~LE_C0_STOP;	    }	    else if (val & LE_C0_STRT) {		reg |= LE_C0_STRT | LE_C0_RXON | LE_C0_TXON;		reg &= ~LE_C0_STOP;	    }	    s->regs[LE_CSR0] = reg;	    break;	case LE_CSR1:	    s->leptr = (s->leptr & 0xffff0000) | (val & 0xffff);	    s->regs[s->addr] = val;	    break;	case LE_CSR2:	    s->leptr = (s->leptr & 0xffff) | ((val & 0xffff) << 16);	    s->regs[s->addr] = val;	    break;	case LE_CSR3:	    s->regs[s->addr] = val;	    break;	}	break;    case LE_RAP:	DPRINTF("write areg = %4.4x\n", val);	if (val < LE_NREGS)	    s->addr = val;	break;    default:	DPRINTF("write unknown(%d) = %4.4x\n", saddr>>1, val);	break;    }    lance_send(s);}static CPUReadMemoryFunc *lance_mem_read[3] = {    lance_mem_readw,    lance_mem_readw,    lance_mem_readw,};static CPUWriteMemoryFunc *lance_mem_write[3] = {    lance_mem_writew,    lance_mem_writew,    lance_mem_writew,};#define MIN_BUF_SIZE 60static int lance_can_receive(void *opaque){    return 1;}static void lance_receive(void *opaque, const uint8_t *buf, int size){    LANCEState *s = opaque;    uint32_t dmaptr = s->leptr + s->ledmaregs[3];    struct lance_init_block *ib;    unsigned int i, old_rxptr;    uint16_t temp16;    uint8_t temp8;    DPRINTF("receive size %d\n", size);    if ((s->regs[LE_CSR0] & LE_C0_STOP) == LE_C0_STOP)	return;    ib = (void *) iommu_translate(dmaptr);    old_rxptr = s->rxptr;    for (i = s->rxptr; i != ((old_rxptr - 1) & RX_RING_MOD_MASK); i = (i + 1) & RX_RING_MOD_MASK) {	cpu_physical_memory_read((uint32_t)&ib->brx_ring[i].rmd1_bits, (void *) &temp8, 1);	if (temp8 == (LE_R1_OWN)) {	    s->rxptr = (s->rxptr + 1) & RX_RING_MOD_MASK;	    temp16 = size + 4;	    bswap16s(&temp16);	    cpu_physical_memory_write((uint32_t)&ib->brx_ring[i].mblength, (void *) &temp16, 2);	    cpu_physical_memory_write((uint32_t)&ib->rx_buf[i], buf, size);	    temp8 = LE_R1_POK;	    cpu_physical_memory_write((uint32_t)&ib->brx_ring[i].rmd1_bits, (void *) &temp8, 1);	    s->regs[LE_CSR0] |= LE_C0_RINT | LE_C0_INTR;	    if (s->regs[LE_CSR0] & LE_C0_INEA)		pic_set_irq(s->irq, 1);	    DPRINTF("got packet, len %d\n", size);	    return;	}    }}static void lance_send(void *opaque){    LANCEState *s = opaque;    uint32_t dmaptr = s->leptr + s->ledmaregs[3];    struct lance_init_block *ib;    unsigned int i, old_txptr;    uint16_t temp16;    uint8_t temp8;    char pkt_buf[PKT_BUF_SZ];    DPRINTF("sending packet? (csr0 %4.4x)\n", s->regs[LE_CSR0]);    if ((s->regs[LE_CSR0] & LE_C0_STOP) == LE_C0_STOP)	return;    ib = (void *) iommu_translate(dmaptr);    DPRINTF("sending packet? (dmaptr %8.8x) (ib %p) (btx_ring %p)\n", dmaptr, ib, &ib->btx_ring);    old_txptr = s->txptr;    for (i = s->txptr; i != ((old_txptr - 1) & TX_RING_MOD_MASK); i = (i + 1) & TX_RING_MOD_MASK) {	cpu_physical_memory_read((uint32_t)&ib->btx_ring[i].tmd1_bits, (void *) &temp8, 1);	if (temp8 == (LE_T1_POK|LE_T1_OWN)) {	    cpu_physical_memory_read((uint32_t)&ib->btx_ring[i].length, (void *) &temp16, 2);	    bswap16s(&temp16);	    temp16 = (~temp16) + 1;	    cpu_physical_memory_read((uint32_t)&ib->tx_buf[i], pkt_buf, temp16);	    DPRINTF("sending packet, len %d\n", temp16);	    qemu_send_packet(s->vc, pkt_buf, temp16);	    temp8 = LE_T1_POK;	    cpu_physical_memory_write((uint32_t)&ib->btx_ring[i].tmd1_bits, (void *) &temp8, 1);	    s->txptr = (s->txptr + 1) & TX_RING_MOD_MASK;	    s->regs[LE_CSR0] |= LE_C0_TINT | LE_C0_INTR;	}    }    if ((s->regs[LE_CSR0] & LE_C0_INTR) && (s->regs[LE_CSR0] & LE_C0_INEA))	pic_set_irq(s->irq, 1);}static uint32_t ledma_mem_readl(void *opaque, target_phys_addr_t addr){    LANCEState *s = opaque;    uint32_t saddr;    saddr = (addr & LEDMA_MAXADDR) >> 2;    return s->ledmaregs[saddr];}static void ledma_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val){    LANCEState *s = opaque;    uint32_t saddr;    saddr = (addr & LEDMA_MAXADDR) >> 2;    s->ledmaregs[saddr] = val;}static CPUReadMemoryFunc *ledma_mem_read[3] = {    ledma_mem_readl,    ledma_mem_readl,    ledma_mem_readl,};static CPUWriteMemoryFunc *ledma_mem_write[3] = {    ledma_mem_writel,    ledma_mem_writel,    ledma_mem_writel,};static void lance_save(QEMUFile *f, void *opaque){    LANCEState *s = opaque;    int i;        qemu_put_be32s(f, &s->leptr);    qemu_put_be16s(f, &s->addr);    for (i = 0; i < LE_NREGS; i ++)	qemu_put_be16s(f, &s->regs[i]);    qemu_put_buffer(f, s->phys, 6);    qemu_put_be32s(f, &s->irq);    for (i = 0; i < LEDMA_REGS; i ++)	qemu_put_be32s(f, &s->ledmaregs[i]);}static int lance_load(QEMUFile *f, void *opaque, int version_id){    LANCEState *s = opaque;    int i;        if (version_id != 1)        return -EINVAL;    qemu_get_be32s(f, &s->leptr);    qemu_get_be16s(f, &s->addr);    for (i = 0; i < LE_NREGS; i ++)	qemu_get_be16s(f, &s->regs[i]);    qemu_get_buffer(f, s->phys, 6);    qemu_get_be32s(f, &s->irq);    for (i = 0; i < LEDMA_REGS; i ++)	qemu_get_be32s(f, &s->ledmaregs[i]);    return 0;}void lance_init(NICInfo *nd, int irq, uint32_t leaddr, uint32_t ledaddr){    LANCEState *s;    int lance_io_memory, ledma_io_memory;    s = qemu_mallocz(sizeof(LANCEState));    if (!s)        return;    s->irq = irq;    lance_io_memory = cpu_register_io_memory(0, lance_mem_read, lance_mem_write, s);    cpu_register_physical_memory(leaddr, 4, lance_io_memory);    ledma_io_memory = cpu_register_io_memory(0, ledma_mem_read, ledma_mem_write, s);    cpu_register_physical_memory(ledaddr, 16, ledma_io_memory);    memcpy(s->macaddr, nd->macaddr, 6);    lance_reset(s);    s->vc = qemu_new_vlan_client(nd->vlan, lance_receive, lance_can_receive, s);    snprintf(s->vc->info_str, sizeof(s->vc->info_str),             "lance macaddr=%02x:%02x:%02x:%02x:%02x:%02x",             s->macaddr[0],             s->macaddr[1],             s->macaddr[2],             s->macaddr[3],             s->macaddr[4],             s->macaddr[5]);    register_savevm("lance", leaddr, 1, lance_save, lance_load, s);    qemu_register_reset(lance_reset, s);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -