⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 slavio_timer.c

📁 qemu虚拟机代码
💻 C
字号:
/* * QEMU Sparc SLAVIO timer controller emulation * * Copyright (c) 2003-2005 Fabrice Bellard *  * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */#include "vl.h"//#define DEBUG_TIMER#ifdef DEBUG_TIMER#define DPRINTF(fmt, args...) \do { printf("TIMER: " fmt , ##args); } while (0)#else#define DPRINTF(fmt, args...)#endif/* * Registers of hardware timer in sun4m. * * This is the timer/counter part of chip STP2001 (Slave I/O), also * produced as NCR89C105. See * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt *  * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0 * are zero. Bit 31 is 1 when count has been reached. * * Per-CPU timers interrupt local CPU, system timer uses normal * interrupt routing. * */typedef struct SLAVIO_TIMERState {    uint32_t limit, count, counthigh;    int64_t count_load_time;    int64_t expire_time;    int64_t stop_time, tick_offset;    QEMUTimer *irq_timer;    int irq;    int reached, stopped;    int mode; // 0 = processor, 1 = user, 2 = system    unsigned int cpu;} SLAVIO_TIMERState;#define TIMER_MAXADDR 0x1f#define CNT_FREQ 2000000// Update count, set irq, update expire_timestatic void slavio_timer_get_out(SLAVIO_TIMERState *s){    int out;    int64_t diff, ticks, count;    uint32_t limit;    // There are three clock tick units: CPU ticks, register units    // (nanoseconds), and counter ticks (500 ns).    if (s->mode == 1 && s->stopped)	ticks = s->stop_time;    else	ticks = qemu_get_clock(vm_clock) - s->tick_offset;    out = (ticks > s->expire_time);    if (out)	s->reached = 0x80000000;    if (!s->limit)	limit = 0x7fffffff;    else	limit = s->limit;    // Convert register units to counter ticks    limit = limit >> 9;    // Convert cpu ticks to counter ticks    diff = muldiv64(ticks - s->count_load_time, CNT_FREQ, ticks_per_sec);    // Calculate what the counter should be, convert to register    // units    count = diff % limit;    s->count = count << 9;    s->counthigh = count >> 22;    // Expire time: CPU ticks left to next interrupt    // Convert remaining counter ticks to CPU ticks    s->expire_time = ticks + muldiv64(limit - count, ticks_per_sec, CNT_FREQ);    DPRINTF("irq %d limit %d reached %d d %lld count %d s->c %x diff %lld stopped %d mode %d\n", s->irq, limit, s->reached?1:0, (ticks-s->count_load_time), count, s->count, s->expire_time - ticks, s->stopped, s->mode);    if (s->mode != 1)	pic_set_irq_cpu(s->irq, out, s->cpu);}// timer callbackstatic void slavio_timer_irq(void *opaque){    SLAVIO_TIMERState *s = opaque;    if (!s->irq_timer)        return;    slavio_timer_get_out(s);    if (s->mode != 1)	qemu_mod_timer(s->irq_timer, s->expire_time);}static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr){    SLAVIO_TIMERState *s = opaque;    uint32_t saddr;    saddr = (addr & TIMER_MAXADDR) >> 2;    switch (saddr) {    case 0:	// read limit (system counter mode) or read most signifying	// part of counter (user mode)	if (s->mode != 1) {	    // clear irq	    pic_set_irq_cpu(s->irq, 0, s->cpu);	    s->count_load_time = qemu_get_clock(vm_clock);	    s->reached = 0;	    return s->limit;	}	else {	    slavio_timer_get_out(s);	    return s->counthigh & 0x7fffffff;	}    case 1:	// read counter and reached bit (system mode) or read lsbits	// of counter (user mode)	slavio_timer_get_out(s);	if (s->mode != 1)	    return (s->count & 0x7fffffff) | s->reached;	else	    return s->count;    case 3:	// read start/stop status	return s->stopped;    case 4:	// read user/system mode	return s->mode & 1;    default:	return 0;    }}static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val){    SLAVIO_TIMERState *s = opaque;    uint32_t saddr;    saddr = (addr & TIMER_MAXADDR) >> 2;    switch (saddr) {    case 0:	// set limit, reset counter	s->count_load_time = qemu_get_clock(vm_clock);	// fall through    case 2:	// set limit without resetting counter	if (!val)	    s->limit = 0x7fffffff;	else	    s->limit = val & 0x7fffffff;	slavio_timer_irq(s);	break;    case 3:	// start/stop user counter	if (s->mode == 1) {	    if (val & 1) {		s->stop_time = qemu_get_clock(vm_clock);		s->stopped = 1;	    }	    else {		if (s->stopped)		    s->tick_offset += qemu_get_clock(vm_clock) - s->stop_time;		s->stopped = 0;	    }	}	break;    case 4:	// bit 0: user (1) or system (0) counter mode	if (s->mode == 0 || s->mode == 1)	    s->mode = val & 1;	break;    default:	break;    }}static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {    slavio_timer_mem_readl,    slavio_timer_mem_readl,    slavio_timer_mem_readl,};static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {    slavio_timer_mem_writel,    slavio_timer_mem_writel,    slavio_timer_mem_writel,};static void slavio_timer_save(QEMUFile *f, void *opaque){    SLAVIO_TIMERState *s = opaque;    qemu_put_be32s(f, &s->limit);    qemu_put_be32s(f, &s->count);    qemu_put_be32s(f, &s->counthigh);    qemu_put_be64s(f, &s->count_load_time);    qemu_put_be64s(f, &s->expire_time);    qemu_put_be64s(f, &s->stop_time);    qemu_put_be64s(f, &s->tick_offset);    qemu_put_be32s(f, &s->irq);    qemu_put_be32s(f, &s->reached);    qemu_put_be32s(f, &s->stopped);    qemu_put_be32s(f, &s->mode);}static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id){    SLAVIO_TIMERState *s = opaque;        if (version_id != 1)        return -EINVAL;    qemu_get_be32s(f, &s->limit);    qemu_get_be32s(f, &s->count);    qemu_get_be32s(f, &s->counthigh);    qemu_get_be64s(f, &s->count_load_time);    qemu_get_be64s(f, &s->expire_time);    qemu_get_be64s(f, &s->stop_time);    qemu_get_be64s(f, &s->tick_offset);    qemu_get_be32s(f, &s->irq);    qemu_get_be32s(f, &s->reached);    qemu_get_be32s(f, &s->stopped);    qemu_get_be32s(f, &s->mode);    return 0;}static void slavio_timer_reset(void *opaque){    SLAVIO_TIMERState *s = opaque;    s->limit = 0;    s->count = 0;    s->count_load_time = qemu_get_clock(vm_clock);;    s->stop_time = s->count_load_time;    s->tick_offset = 0;    s->reached = 0;    s->mode &= 2;    s->stopped = 1;    slavio_timer_get_out(s);}void slavio_timer_init(uint32_t addr, int irq, int mode, unsigned int cpu){    int slavio_timer_io_memory;    SLAVIO_TIMERState *s;    s = qemu_mallocz(sizeof(SLAVIO_TIMERState));    if (!s)        return;    s->irq = irq;    s->mode = mode;    s->cpu = cpu;    s->irq_timer = qemu_new_timer(vm_clock, slavio_timer_irq, s);    slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,						    slavio_timer_mem_write, s);    cpu_register_physical_memory(addr, TIMER_MAXADDR, slavio_timer_io_memory);    register_savevm("slavio_timer", addr, 1, slavio_timer_save, slavio_timer_load, s);    qemu_register_reset(slavio_timer_reset, s);    slavio_timer_reset(s);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -