⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 arm_timer.c

📁 qemu虚拟机代码
💻 C
字号:
/*  * ARM PrimeCell Timer modules. * * Copyright (c) 2005-2006 CodeSourcery. * Written by Paul Brook * * This code is licenced under the GPL. */#include "vl.h"#include "arm_pic.h"/* Common timer implementation.  */#define TIMER_CTRL_ONESHOT      (1 << 0)#define TIMER_CTRL_32BIT        (1 << 1)#define TIMER_CTRL_DIV1         (0 << 2)#define TIMER_CTRL_DIV16        (1 << 2)#define TIMER_CTRL_DIV256       (2 << 2)#define TIMER_CTRL_IE           (1 << 5)#define TIMER_CTRL_PERIODIC     (1 << 6)#define TIMER_CTRL_ENABLE       (1 << 7)typedef struct {    int64_t next_time;    int64_t expires;    int64_t loaded;    QEMUTimer *timer;    uint32_t control;    uint32_t count;    uint32_t limit;    int raw_freq;    int freq;    int int_level;    void *pic;    int irq;} arm_timer_state;/* Calculate the new expiry time of the given timer.  */static void arm_timer_reload(arm_timer_state *s){    int64_t delay;    s->loaded = s->expires;    delay = muldiv64(s->count, ticks_per_sec, s->freq);    if (delay == 0)        delay = 1;    s->expires += delay;}/* Check all active timers, and schedule the next timer interrupt.  */static void arm_timer_update(arm_timer_state *s, int64_t now){    int64_t next;    /* Ignore disabled timers.  */    if ((s->control & TIMER_CTRL_ENABLE) == 0)        return;    /* Ignore expired one-shot timers.  */    if (s->count == 0 && (s->control & TIMER_CTRL_ONESHOT))        return;    if (s->expires - now <= 0) {        /* Timer has expired.  */        s->int_level = 1;        if (s->control & TIMER_CTRL_ONESHOT) {            /* One-shot.  */            s->count = 0;        } else {            if ((s->control & TIMER_CTRL_PERIODIC) == 0) {                /* Free running.  */                if (s->control & TIMER_CTRL_32BIT)                    s->count = 0xffffffff;                else                    s->count = 0xffff;            } else {                  /* Periodic.  */                  s->count = s->limit;            }        }    }    while (s->expires - now <= 0) {        arm_timer_reload(s);    }    /* Update interrupts.  */    if (s->int_level && (s->control & TIMER_CTRL_IE)) {        pic_set_irq_new(s->pic, s->irq, 1);    } else {        pic_set_irq_new(s->pic, s->irq, 0);    }    next = now;    if (next - s->expires < 0)        next = s->expires;    /* Schedule the next timer interrupt.  */    if (next == now) {        qemu_del_timer(s->timer);        s->next_time = 0;    } else if (next != s->next_time) {        qemu_mod_timer(s->timer, next);        s->next_time = next;    }}/* Return the current value of the timer.  */static uint32_t arm_timer_getcount(arm_timer_state *s, int64_t now){    int64_t elapsed;    int64_t period;    if (s->count == 0)        return 0;    if ((s->control & TIMER_CTRL_ENABLE) == 0)        return s->count;    elapsed = now - s->loaded;    period = s->expires - s->loaded;    /* If the timer should have expired then return 0.  This can happen       when the host timer signal doesnt occur immediately.  It's better to       have a timer appear to sit at zero for a while than have it wrap       around before the guest interrupt is raised.  */    /* ??? Could we trigger the interrupt here?  */    if (elapsed > period)        return 0;    /* We need to calculate count * elapsed / period without overfowing.       Scale both elapsed and period so they fit in a 32-bit int.  */    while (period != (int32_t)period) {        period >>= 1;        elapsed >>= 1;    }    return ((uint64_t)s->count * (uint64_t)(int32_t)elapsed)            / (int32_t)period;}uint32_t arm_timer_read(void *opaque, target_phys_addr_t offset){    arm_timer_state *s = (arm_timer_state *)opaque;    switch (offset >> 2) {    case 0: /* TimerLoad */    case 6: /* TimerBGLoad */        return s->limit;    case 1: /* TimerValue */        return arm_timer_getcount(s, qemu_get_clock(vm_clock));    case 2: /* TimerControl */        return s->control;    case 4: /* TimerRIS */        return s->int_level;    case 5: /* TimerMIS */        if ((s->control & TIMER_CTRL_IE) == 0)            return 0;        return s->int_level;    default:        cpu_abort (cpu_single_env, "arm_timer_read: Bad offset %x\n", offset);        return 0;    }}static void arm_timer_write(void *opaque, target_phys_addr_t offset,                            uint32_t value){    arm_timer_state *s = (arm_timer_state *)opaque;    int64_t now;    now = qemu_get_clock(vm_clock);    switch (offset >> 2) {    case 0: /* TimerLoad */        s->limit = value;        s->count = value;        s->expires = now;        arm_timer_reload(s);        break;    case 1: /* TimerValue */        /* ??? Linux seems to want to write to this readonly register.           Ignore it.  */        break;    case 2: /* TimerControl */        if (s->control & TIMER_CTRL_ENABLE) {            /* Pause the timer if it is running.  This may cause some               inaccuracy dure to rounding, but avoids a whole lot of other               messyness.  */            s->count = arm_timer_getcount(s, now);        }        s->control = value;        s->freq = s->raw_freq;        /* ??? Need to recalculate expiry time after changing divisor.  */        switch ((value >> 2) & 3) {        case 1: s->freq >>= 4; break;        case 2: s->freq >>= 8; break;        }        if (s->control & TIMER_CTRL_ENABLE) {            /* Restart the timer if still enabled.  */            s->expires = now;            arm_timer_reload(s);        }        break;    case 3: /* TimerIntClr */        s->int_level = 0;        break;    case 6: /* TimerBGLoad */        s->limit = value;        break;    default:        cpu_abort (cpu_single_env, "arm_timer_write: Bad offset %x\n", offset);    }    arm_timer_update(s, now);}static void arm_timer_tick(void *opaque){    int64_t now;    now = qemu_get_clock(vm_clock);    arm_timer_update((arm_timer_state *)opaque, now);}static void *arm_timer_init(uint32_t freq, void *pic, int irq){    arm_timer_state *s;    s = (arm_timer_state *)qemu_mallocz(sizeof(arm_timer_state));    s->pic = pic;    s->irq = irq;    s->raw_freq = s->freq = 1000000;    s->control = TIMER_CTRL_IE;    s->count = 0xffffffff;    s->timer = qemu_new_timer(vm_clock, arm_timer_tick, s);    /* ??? Save/restore.  */    return s;}/* ARM PrimeCell SP804 dual timer module.   Docs for this device don't seem to be publicly available.  This   implementation is based on gueswork, the linux kernel sources and the   Integrator/CP timer modules.  */typedef struct {    /* Include a pseudo-PIC device to merge the two interrupt sources.  */    arm_pic_handler handler;    void *timer[2];    int level[2];    uint32_t base;    /* The output PIC device.  */    void *pic;    int irq;} sp804_state;static void sp804_set_irq(void *opaque, int irq, int level){    sp804_state *s = (sp804_state *)opaque;    s->level[irq] = level;    pic_set_irq_new(s->pic, s->irq, s->level[0] || s->level[1]);}static uint32_t sp804_read(void *opaque, target_phys_addr_t offset){    sp804_state *s = (sp804_state *)opaque;    /* ??? Don't know the PrimeCell ID for this device.  */    offset -= s->base;    if (offset < 0x20) {        return arm_timer_read(s->timer[0], offset);    } else {        return arm_timer_read(s->timer[1], offset - 0x20);    }}static void sp804_write(void *opaque, target_phys_addr_t offset,                        uint32_t value){    sp804_state *s = (sp804_state *)opaque;    offset -= s->base;    if (offset < 0x20) {        arm_timer_write(s->timer[0], offset, value);    } else {        arm_timer_write(s->timer[1], offset - 0x20, value);    }}static CPUReadMemoryFunc *sp804_readfn[] = {   sp804_read,   sp804_read,   sp804_read};static CPUWriteMemoryFunc *sp804_writefn[] = {   sp804_write,   sp804_write,   sp804_write};void sp804_init(uint32_t base, void *pic, int irq){    int iomemtype;    sp804_state *s;    s = (sp804_state *)qemu_mallocz(sizeof(sp804_state));    s->handler = sp804_set_irq;    s->base = base;    s->pic = pic;    s->irq = irq;    /* ??? The timers are actually configurable between 32kHz and 1MHz, but       we don't implement that.  */    s->timer[0] = arm_timer_init(1000000, s, 0);    s->timer[1] = arm_timer_init(1000000, s, 1);    iomemtype = cpu_register_io_memory(0, sp804_readfn,                                       sp804_writefn, s);    cpu_register_physical_memory(base, 0x00000fff, iomemtype);    /* ??? Save/restore.  */}/* Integrator/CP timer module.  */typedef struct {    void *timer[3];    uint32_t base;} icp_pit_state;static uint32_t icp_pit_read(void *opaque, target_phys_addr_t offset){    icp_pit_state *s = (icp_pit_state *)opaque;    int n;    /* ??? Don't know the PrimeCell ID for this device.  */    offset -= s->base;    n = offset >> 8;    if (n > 3)        cpu_abort(cpu_single_env, "sp804_read: Bad timer %d\n", n);    return arm_timer_read(s->timer[n], offset & 0xff);}static void icp_pit_write(void *opaque, target_phys_addr_t offset,                          uint32_t value){    icp_pit_state *s = (icp_pit_state *)opaque;    int n;    offset -= s->base;    n = offset >> 8;    if (n > 3)        cpu_abort(cpu_single_env, "sp804_write: Bad timer %d\n", n);    arm_timer_write(s->timer[n], offset & 0xff, value);}static CPUReadMemoryFunc *icp_pit_readfn[] = {   icp_pit_read,   icp_pit_read,   icp_pit_read};static CPUWriteMemoryFunc *icp_pit_writefn[] = {   icp_pit_write,   icp_pit_write,   icp_pit_write};void icp_pit_init(uint32_t base, void *pic, int irq){    int iomemtype;    icp_pit_state *s;    s = (icp_pit_state *)qemu_mallocz(sizeof(icp_pit_state));    s->base = base;    /* Timer 0 runs at the system clock speed (40MHz).  */    s->timer[0] = arm_timer_init(40000000, pic, irq);    /* The other two timers run at 1MHz.  */    s->timer[1] = arm_timer_init(1000000, pic, irq + 1);    s->timer[2] = arm_timer_init(1000000, pic, irq + 2);    iomemtype = cpu_register_io_memory(0, icp_pit_readfn,                                       icp_pit_writefn, s);    cpu_register_physical_memory(base, 0x00000fff, iomemtype);    /* ??? Save/restore.  */}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -