📄 img_enhance.c
字号:
/*############################################################################# * 文件名:imageenhance.c * 功能: 实现了图像增强算法 * modified by PRTsinghua@hotmail.com#############################################################################*/#include <math.h>#include <stdio.h>#include <stdlib.h>#include <time.h>#include <string.h>#include "imagemanip.h"/******************************************************************************** 图像增强部分** ** 该增强算法针对指纹图像设计,它标记了指纹图像中没有使用的区域,而其它的区域** 在增强后,脊线可以被清晰的分离出来(使用一个阈值)。** ** 该算法生成了一个脊线方向图,一个掩码图。**** 可参考如下两篇文章:** 1 - Fingerprint Enhancement: Lin Hong, Anil Jain, Sharathcha Pankanti,** and Ruud Bolle. [Hong96]** 2 - Fingerprint Image Enhancement, Algorithm and Performance Evaluation:** Lin Hong, Yifei Wan and Anil Jain. [Hong98]**** 增强算法使用了 文献(2) 中的几个步骤:** A - 归一化** B - 计算方向图** C - 计算频率** D - 计算区域掩码** E - 滤波********************************************************************************/#define P(x,y) ((int32_t)p[(x)+(y)*pitch])/******************************************************************************** 采用了Gabor方向滤波器,如下:**** / 1|x' y' |\** h(x,y:phi,f) = exp|- -|--- + ---| |.cos(2.PI.f.x')** \ 2|dx dy |/**** x' = x.cos(phi) + y.sin(phi)** y' = -x.sin(phi) + y.cos(phi)**** 定义如下:** G 归一化后的图像** O 方向图** F 频率图** R 掩码图像** E 增强后的图像** Wg Gabor滤波器窗口大小**** / 255 if R(i,j) = 0** |** | Wg/2 Wg/2 ** | --- ---** E(i,j)= | \ \** | -- -- h(u,v:O(i,j),F(i,j)).G(i-u,j-v) otherwise** | / /** \ --- ---** u=-Wg/2 v=-Wg/2********************************************************************************/FvsFloat_t EnhanceGabor(FvsFloat_t x, FvsFloat_t y, FvsFloat_t phi, FvsFloat_t f, FvsFloat_t r2){ FvsFloat_t dy2 = 1.0/r2; FvsFloat_t dx2 = 1.0/r2; FvsFloat_t x2, y2;// phi += M_PI/2;// x2 = -x*sin(phi) + y*cos(phi);
// y2 = x*cos(phi) + y*sin(phi);
x2 = x*cos(phi) + y*sin(phi);
y2 = - x*sin(phi) + y*cos(phi); return exp(-0.5*(x2*x2*dx2 + y2*y2*dy2))*cos(2*M_PI*x2*f);}static FvsError_t ImageEnhanceFilter ( FvsImage_t normalized, const FvsImage_t mask, const FvsFloat_t* orientation, const FvsFloat_t* frequence, FvsFloat_t radius ){ FvsInt_t Wg2 = 8; FvsInt_t i,j, u,v; FvsError_t nRet = FvsOK; FvsImage_t enhanced = NULL; FvsInt_t w = ImageGetWidth (normalized); FvsInt_t h = ImageGetHeight(normalized); FvsInt_t pitchG = ImageGetPitch (normalized); FvsByte_t* pG = ImageGetBuffer(normalized); FvsFloat_t sum, f, o;
FvsFloat_t x2, y2,cosdir,sindir;
/* 平方 */ radius = radius*radius;
enhanced = ImageCreate(); if (enhanced==NULL || pG==NULL) return FvsMemory; if (nRet==FvsOK) nRet = ImageSetSize(enhanced, w, h); if (nRet==FvsOK) { FvsInt_t pitchE = ImageGetPitch (enhanced); FvsByte_t* pE = ImageGetBuffer(enhanced); if (pE==NULL) return FvsMemory; (void)ImageClear(enhanced);
for (j = Wg2; j < h-Wg2; j++) for (i = Wg2; i < w-Wg2; i++) { if (mask==NULL || ImageGetPixel(mask, i, j)!=0)
{ sum = 0.0; o = orientation[i+j*w]; f = frequence[i+j*w];
cosdir=cos(o);
sindir=sin(o);
/* if(i<140 && i>120 )
sum=0.0;
if(j<135 && j>120 && i==130)
sum=0.0;
*/
for (v = -Wg2; v <= Wg2; v++) for (u = -Wg2; u <= Wg2; u++) { /*sum += EnhanceGabor ( (FvsFloat_t)u, (FvsFloat_t)v, o,f,radius ) * pG[(i+u)+(j+v)*pitchG];*/
x2 = u*cosdir + v*sindir;
y2 = - u*sindir + v*cosdir;
sum +=exp(-0.5*(x2*x2/radius + y2*y2/radius))*cos(2*M_PI*x2*f)* pG[(i+u)+(j+v)*pitchG];
} if (sum>255.0) sum = 255.0; if (sum<0.0) sum = 0.0; pE[i+j*pitchE] = (uint8_t)sum; } }
nRet = ImageCopy(normalized, enhanced); } (void)ImageDestroy(enhanced); return nRet;}/******************************************************************************
** 采用了Gabor方向滤波器,如下:
** 数据窗口采用符合脊线方向的16*16点
**
******************************************************************************/
static FvsError_t ImageEnhanceFilter1
(
FvsImage_t normalized,
const FvsImage_t mask,
const FvsFloat_t* orientation,
const FvsFloat_t* frequence,
FvsFloat_t radius
)
{
FvsInt_t Wg2 = 8;
FvsInt_t i,j, u,v,x,y,x1,y1;
FvsError_t nRet = FvsOK;
FvsImage_t enhanced = NULL;
FvsInt_t w = ImageGetWidth (normalized);
FvsInt_t h = ImageGetHeight(normalized);
FvsInt_t pitchG = ImageGetPitch (normalized);
FvsByte_t* pG = ImageGetBuffer(normalized);
FvsFloat_t sum, f, o,o1,o2,rate=1.0;
FvsFloat_t cosdir,sindir,x2,y2;
/* 平方 */
radius = radius*radius;
enhanced = ImageCreate();
if (enhanced==NULL || pG==NULL)
return FvsMemory;
if (nRet==FvsOK)
nRet = ImageSetSize(enhanced, w, h);
if (nRet==FvsOK)
{
FvsInt_t pitchE = ImageGetPitch (enhanced);
FvsByte_t* pE = ImageGetBuffer(enhanced);
if (pE==NULL)
return FvsMemory;
(void)ImageClear(enhanced);
for (j = Wg2; j < h-Wg2; j++)
for (i = Wg2; i < w-Wg2; i++)
{
if (mask==NULL || ImageGetPixel(mask, i, j)!=0)
{
sum = 0.0;
o = orientation[i+j*w];
f = frequence[i+j*w];
cosdir=cos(o);
sindir=sin(o);
x =(FvsInt_t)(-Wg2/2*sindir)+i;
y =(FvsInt_t)(Wg2/2*cosdir)+j;
o1=frequence[x+y*w];
x =(FvsInt_t)(Wg2/2*sindir)+i;
y =(FvsInt_t)(-Wg2/2*cosdir)+j;
o2=frequence[x+y*w];
/* if(i>68 && i<139 && j>43 && j<175 && (1.0-4*fabs(o1-o2))<rate)
{
rate=1.0-4*fabs(o1-o2);
x1=i;
y1=j;
}*/
rate=fabs(1.0-10*fabs(o1-o2));
// if(i<140 && i>120 )
// sum=0.0;
// if(j<73 && j>70 && i==130)
// sum=0.0;
for (v = -Wg2; v <= Wg2; v++)
for (u = -Wg2; u <= Wg2; u++)
{
x2 = u*cosdir + v*sindir;
y2 = - u*sindir + v*cosdir;
sum +=exp(-0.5*(x2*x2/rate/radius + y2*y2/rate/radius)) \
*cos(2*M_PI*x2*f)* pG[(i+u)+(j+v)*pitchG];
}
if (sum>255.0)
sum = 255.0;
if (sum<0.0)
sum = 0.0;
pE[i+j*pitchE] = (uint8_t)sum;
}
}
nRet = ImageCopy(normalized, enhanced);
}
(void)ImageDestroy(enhanced);
return nRet;
}
static FvsError_t ImageEnhanceFilter2
(
FvsImage_t normalized,
const FvsImage_t mask,
const FvsFloat_t* orientation,
const FvsFloat_t* frequence,
FvsFloat_t radius
)
{
FvsInt_t Wg2 = 8;
FvsInt_t i,j, u,v;
FvsError_t nRet = FvsOK;
FvsImage_t enhanced = NULL;
FvsInt_t w = ImageGetWidth (normalized);
FvsInt_t h = ImageGetHeight(normalized);
FvsInt_t pitchG = ImageGetPitch (normalized);
FvsByte_t* pG = ImageGetBuffer(normalized);
FvsFloat_t sum, f, o;
FvsFloat_t x2, y2,cosdir,sindir;
FvsFloat_t expv[17][17];
radius = radius*radius;
for (v = -Wg2; v <= Wg2; v++)
for (u = -Wg2; u <= Wg2; u++)
{
expv[8+v][8+u]=exp(-0.5*(u*u+v*v)/radius);
}
enhanced = ImageCreate();
if (enhanced==NULL || pG==NULL)
return FvsMemory;
if (nRet==FvsOK)
nRet = ImageSetSize(enhanced, w, h);
if (nRet==FvsOK)
{
FvsInt_t pitchE = ImageGetPitch (enhanced);
FvsByte_t* pE = ImageGetBuffer(enhanced);
if (pE==NULL)
return FvsMemory;
(void)ImageClear(enhanced);
for (j = Wg2; j < h-Wg2; j++)
for (i = Wg2; i < w-Wg2; i++)
{
if (mask==NULL || ImageGetPixel(mask, i, j)!=0)
{
sum = 0.0;
o = orientation[i+j*w];
f = frequence[i+j*w];
cosdir=cos(o);
sindir=sin(o);
if(i<140 && i>120 && j==85 )
sum=0.0;
if(j<128 && j>120 && i==162)
sum=0.0;
for (v = -Wg2; v <= Wg2; v++)
for (u = -Wg2; u <= Wg2; u++)
{
x2 = u*cosdir + v*sindir;
// y2 = - u*sindir + v*cosdir;
sum +=expv[8+v][8+u]*cos(2*M_PI*x2*f)* pG[(i+u)+(j+v)*pitchG];
}
if (sum>255.0)
sum = 255.0;
if (sum<0.0)
sum = 0.0;
pE[i+j*pitchE] = (uint8_t)sum;
}
else pE[i+j*pitchE] = 255;
}
nRet = ImageCopy(normalized, enhanced);
}
(void)ImageDestroy(enhanced);
return nRet;
}
/******************************************************************************
* 功能:指纹图像增强算法
* 该算法描述起来比较复杂,其后处理的部分是基于Gabor滤波器的,
参数动态计算。图像处理时参数依次改变,所以要做一个原图的备份。
* 参数:image 指纹图像
* direction 脊线方向,需要事先计算
* frequency 脊线频率,需要事先计算
* mask 指示指纹的有效区域
* radius 滤波器半径,大多数情况下,4.0即可。
值越大,噪声可以受到更大抑制,但会产生更多的伪特征。
* 返回:错误编号
******************************************************************************/
FvsError_t ImageEnhanceGabor(FvsImage_t image, const FvsFloatField_t direction,
const FvsFloatField_t frequency, const FvsImage_t mask,
const FvsFloat_t radius)
{
FvsError_t nRet = FvsOK;
FvsFloat_t * image_orientation = FloatFieldGetBuffer(direction);
FvsFloat_t * image_frequence = FloatFieldGetBuffer(frequency);
if (image_orientation==NULL || image_frequence==NULL)
return FvsMemory;
nRet = ImageEnhanceFilter2(image, mask, image_orientation,
image_frequence, radius);
return nRet;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -