⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 img_enhance.c

📁 c代码
💻 C
字号:
/*############################################################################# * 文件名:imageenhance.c * 功能:  实现了图像增强算法 * modified by  PRTsinghua@hotmail.com#############################################################################*/#include <math.h>#include <stdio.h>#include <stdlib.h>#include <time.h>#include <string.h>#include "imagemanip.h"/******************************************************************************** 图像增强部分** ** 该增强算法针对指纹图像设计,它标记了指纹图像中没有使用的区域,而其它的区域** 在增强后,脊线可以被清晰的分离出来(使用一个阈值)。** ** 该算法生成了一个脊线方向图,一个掩码图。**** 可参考如下两篇文章:** 1 - Fingerprint Enhancement: Lin Hong, Anil Jain, Sharathcha Pankanti,**     and Ruud Bolle. [Hong96]** 2 - Fingerprint Image Enhancement, Algorithm and Performance Evaluation:**     Lin Hong, Yifei Wan and Anil Jain. [Hong98]**** 增强算法使用了 文献(2) 中的几个步骤:**  A - 归一化**  B - 计算方向图**  C - 计算频率**  D - 计算区域掩码**  E - 滤波********************************************************************************/#define P(x,y)      ((int32_t)p[(x)+(y)*pitch])/******************************************************************************** 采用了Gabor方向滤波器,如下:****                    / 1|x'     y'  |\** h(x,y:phi,f) = exp|- -|--- + ---| |.cos(2.PI.f.x')**                    \ 2|dx     dy  |/**** x' =  x.cos(phi) + y.sin(phi)** y' = -x.sin(phi) + y.cos(phi)**** 定义如下:**  G 归一化后的图像**  O 方向图**  F 频率图**  R 掩码图像**  E 增强后的图像**  Wg Gabor滤波器窗口大小****          / 255                                          if R(i,j) = 0**         |**         |  Wg/2    Wg/2 **         |  ---     ---** E(i,j)= |  \       \**         |   --      --  h(u,v:O(i,j),F(i,j)).G(i-u,j-v) otherwise**         |  /       /**          \ ---     ---**            u=-Wg/2 v=-Wg/2********************************************************************************/FvsFloat_t EnhanceGabor(FvsFloat_t x, FvsFloat_t y, FvsFloat_t phi, 								FvsFloat_t f, FvsFloat_t r2){    FvsFloat_t dy2 = 1.0/r2;    FvsFloat_t dx2 = 1.0/r2;    FvsFloat_t x2, y2;//    phi += M_PI/2;//    x2 = -x*sin(phi) + y*cos(phi);
//    y2 =  x*cos(phi) + y*sin(phi);
	x2 = x*cos(phi) + y*sin(phi);
    y2 = - x*sin(phi) + y*cos(phi);    return exp(-0.5*(x2*x2*dx2 + y2*y2*dy2))*cos(2*M_PI*x2*f);}static FvsError_t ImageEnhanceFilter    (    FvsImage_t        normalized,    const FvsImage_t  mask,    const FvsFloat_t* orientation,    const FvsFloat_t* frequence,    FvsFloat_t        radius    ){    FvsInt_t Wg2 = 8;    FvsInt_t i,j, u,v;    FvsError_t nRet  = FvsOK;    FvsImage_t enhanced = NULL;    FvsInt_t w        = ImageGetWidth (normalized);    FvsInt_t h        = ImageGetHeight(normalized);    FvsInt_t pitchG   = ImageGetPitch (normalized);    FvsByte_t* pG     = ImageGetBuffer(normalized);    FvsFloat_t sum, f, o;
	FvsFloat_t x2, y2,cosdir,sindir;
    /* 平方 */    radius = radius*radius;
    enhanced = ImageCreate();    if (enhanced==NULL || pG==NULL)        return FvsMemory;    if (nRet==FvsOK)        nRet = ImageSetSize(enhanced, w, h);    if (nRet==FvsOK)    {        FvsInt_t pitchE  = ImageGetPitch (enhanced);        FvsByte_t* pE    = ImageGetBuffer(enhanced);        if (pE==NULL)            return FvsMemory;        (void)ImageClear(enhanced);

        for (j = Wg2; j < h-Wg2; j++)        for (i = Wg2; i < w-Wg2; i++)        {            if (mask==NULL || ImageGetPixel(mask, i, j)!=0)
            {                sum = 0.0;                o = orientation[i+j*w];                f = frequence[i+j*w];
				cosdir=cos(o);
				sindir=sin(o);

/*				if(i<140 && i>120 )
					sum=0.0;
				if(j<135 && j>120 && i==130)
					sum=0.0;
*/
                for (v = -Wg2; v <= Wg2; v++)                for (u = -Wg2; u <= Wg2; u++)                {                    /*sum += EnhanceGabor		        			(		                		(FvsFloat_t)u,								(FvsFloat_t)v,								o,f,radius							)							* pG[(i+u)+(j+v)*pitchG];*/

	x2 = u*cosdir + v*sindir;
    y2 = - u*sindir + v*cosdir;
    sum +=exp(-0.5*(x2*x2/radius + y2*y2/radius))*cos(2*M_PI*x2*f)* pG[(i+u)+(j+v)*pitchG];
                }                if (sum>255.0)                 	sum = 255.0;                if (sum<0.0)                   	sum = 0.0;                pE[i+j*pitchE] = (uint8_t)sum;            }        }
        nRet = ImageCopy(normalized, enhanced);    }    (void)ImageDestroy(enhanced);    return nRet;}/******************************************************************************
** 采用了Gabor方向滤波器,如下:
**	数据窗口采用符合脊线方向的16*16点
**
******************************************************************************/
static FvsError_t ImageEnhanceFilter1
    (
    FvsImage_t        normalized,
    const FvsImage_t  mask,
    const FvsFloat_t* orientation,
    const FvsFloat_t* frequence,
    FvsFloat_t        radius
    )
{
    FvsInt_t Wg2 = 8;
    FvsInt_t i,j, u,v,x,y,x1,y1;
    FvsError_t nRet  = FvsOK;
    FvsImage_t enhanced = NULL;

    FvsInt_t w        = ImageGetWidth (normalized);
    FvsInt_t h        = ImageGetHeight(normalized);
    FvsInt_t pitchG   = ImageGetPitch (normalized);
    FvsByte_t* pG     = ImageGetBuffer(normalized);
    FvsFloat_t sum, f, o,o1,o2,rate=1.0;
	FvsFloat_t cosdir,sindir,x2,y2;

    /* 平方 */
    radius = radius*radius;

    enhanced = ImageCreate();
    if (enhanced==NULL || pG==NULL)
        return FvsMemory;
    if (nRet==FvsOK)
        nRet = ImageSetSize(enhanced, w, h);
    if (nRet==FvsOK)
    {
        FvsInt_t pitchE  = ImageGetPitch (enhanced);
        FvsByte_t* pE    = ImageGetBuffer(enhanced);
        if (pE==NULL)
            return FvsMemory;
        (void)ImageClear(enhanced);

        for (j = Wg2; j < h-Wg2; j++)
        for (i = Wg2; i < w-Wg2; i++)
        {
            if (mask==NULL || ImageGetPixel(mask, i, j)!=0)
            {
                sum = 0.0;
                o = orientation[i+j*w];
                f = frequence[i+j*w];
				cosdir=cos(o);
				sindir=sin(o);

				x =(FvsInt_t)(-Wg2/2*sindir)+i;
				y =(FvsInt_t)(Wg2/2*cosdir)+j;
				o1=frequence[x+y*w];

				x =(FvsInt_t)(Wg2/2*sindir)+i;
				y =(FvsInt_t)(-Wg2/2*cosdir)+j;
				o2=frequence[x+y*w];
/*				if(i>68 && i<139 && j>43 && j<175 && (1.0-4*fabs(o1-o2))<rate)
				{
					rate=1.0-4*fabs(o1-o2);
					x1=i;
					y1=j;
				}*/
				rate=fabs(1.0-10*fabs(o1-o2));
//				if(i<140 && i>120 )
//					sum=0.0;
//				if(j<73 && j>70 && i==130)
//					sum=0.0;

                for (v = -Wg2; v <= Wg2; v++)
                for (u = -Wg2; u <= Wg2; u++)
                {
					x2 = u*cosdir + v*sindir;
					y2 = - u*sindir + v*cosdir;
					sum +=exp(-0.5*(x2*x2/rate/radius + y2*y2/rate/radius)) \
						*cos(2*M_PI*x2*f)* pG[(i+u)+(j+v)*pitchG];
                }
                if (sum>255.0) 
                	sum = 255.0;
                if (sum<0.0)   
                	sum = 0.0;
                pE[i+j*pitchE] = (uint8_t)sum;
            }
        }
        nRet = ImageCopy(normalized, enhanced);
    }
    (void)ImageDestroy(enhanced);
    return nRet;
}
static FvsError_t ImageEnhanceFilter2
    (
    FvsImage_t        normalized,
    const FvsImage_t  mask,
    const FvsFloat_t* orientation,
    const FvsFloat_t* frequence,
    FvsFloat_t        radius
    )
{
    FvsInt_t Wg2 = 8;
    FvsInt_t i,j, u,v;
    FvsError_t nRet  = FvsOK;
    FvsImage_t enhanced = NULL;

    FvsInt_t w        = ImageGetWidth (normalized);
    FvsInt_t h        = ImageGetHeight(normalized);
    FvsInt_t pitchG   = ImageGetPitch (normalized);
    FvsByte_t* pG     = ImageGetBuffer(normalized);
    FvsFloat_t sum, f, o;
	FvsFloat_t x2, y2,cosdir,sindir;


	FvsFloat_t expv[17][17];

    radius = radius*radius;
    
	for (v = -Wg2; v <= Wg2; v++)
        for (u = -Wg2; u <= Wg2; u++)
        {
		expv[8+v][8+u]=exp(-0.5*(u*u+v*v)/radius);
		}

    enhanced = ImageCreate();
    if (enhanced==NULL || pG==NULL)
        return FvsMemory;
    if (nRet==FvsOK)
        nRet = ImageSetSize(enhanced, w, h);
    if (nRet==FvsOK)
    {
        FvsInt_t pitchE  = ImageGetPitch (enhanced);
        FvsByte_t* pE    = ImageGetBuffer(enhanced);
        if (pE==NULL)
            return FvsMemory;
        (void)ImageClear(enhanced);

        for (j = Wg2; j < h-Wg2; j++)
        for (i = Wg2; i < w-Wg2; i++)
        {
            if (mask==NULL || ImageGetPixel(mask, i, j)!=0)
            {
                sum = 0.0;
                o = orientation[i+j*w];
                f = frequence[i+j*w];
				cosdir=cos(o);
				sindir=sin(o);

				if(i<140 && i>120 && j==85 )
					sum=0.0;
				if(j<128 && j>120 && i==162)
					sum=0.0;
 
				for (v = -Wg2; v <= Wg2; v++)
                for (u = -Wg2; u <= Wg2; u++)
                {
 	x2 = u*cosdir + v*sindir;
//    y2 = - u*sindir + v*cosdir;
    sum +=expv[8+v][8+u]*cos(2*M_PI*x2*f)* pG[(i+u)+(j+v)*pitchG];
                }
                if (sum>255.0) 
                	sum = 255.0;
                if (sum<0.0)   
                	sum = 0.0;
                pE[i+j*pitchE] = (uint8_t)sum;
            }
		else	pE[i+j*pitchE] = 255;
        }
        nRet = ImageCopy(normalized, enhanced);
    }
    (void)ImageDestroy(enhanced);
    return nRet;
}



/******************************************************************************
  * 功能:指纹图像增强算法
  *       该算法描述起来比较复杂,其后处理的部分是基于Gabor滤波器的,
          参数动态计算。图像处理时参数依次改变,所以要做一个原图的备份。
  * 参数:image        指纹图像
  *       direction    脊线方向,需要事先计算
  *       frequency    脊线频率,需要事先计算
  *       mask         指示指纹的有效区域
  *       radius       滤波器半径,大多数情况下,4.0即可。
                       值越大,噪声可以受到更大抑制,但会产生更多的伪特征。
  * 返回:错误编号
******************************************************************************/
FvsError_t ImageEnhanceGabor(FvsImage_t image, const FvsFloatField_t direction,
            const FvsFloatField_t frequency, const FvsImage_t mask, 
            const FvsFloat_t radius)
{
    FvsError_t nRet = FvsOK;
    FvsFloat_t * image_orientation = FloatFieldGetBuffer(direction);
    FvsFloat_t * image_frequence   = FloatFieldGetBuffer(frequency);

    if (image_orientation==NULL || image_frequence==NULL)
        return FvsMemory;

    nRet = ImageEnhanceFilter2(image, mask, image_orientation, 
    						image_frequence, radius);
    return nRet;
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -