📄 inverse.c
字号:
#include <stdio.h>
#include <malloc.h>
#include <math.h>
void MatrixMul(a,b,m,n,k,c) /*实矩阵相乘*/
int m,n,k; /*m:矩阵A的行数, n:矩阵B的行数, k:矩阵B的列数*/
double a[],b[],c[]; /*a为A矩阵, b为B矩阵, c为结果,即c = AB */
{
int i,j,l,u;
/*逐行逐列计算乘积*/
for (i=0; i<=m-1; i++)
for (j=0; j<=k-1; j++)
{
u=i*k+j; c[u]=0.0;
for (l=0; l<=n-1; l++)
c[u]=c[u]+a[i*n+l]*b[l*k+j];
}
return;
}
int brinv(a,n) /*求矩阵的逆矩阵*/
int n; /*矩阵的阶数*/
double a[]; /*矩阵A*/
{
int *is,*js,i,j,k,l,u,v;
double d,p;
is=malloc(n*sizeof(int));
js=malloc(n*sizeof(int));
for (k=0; k<=n-1; k++)
{
d=0.0;
for (i=k; i<=n-1; i++)
/*全选主元,即选取绝对值最大的元素*/
for (j=k; j<=n-1; j++)
{
l=i*n+j; p=fabs(a[l]);
if (p>d) { d=p; is[k]=i; js[k]=j;}
}
/*全部为0,此时为奇异矩阵*/
if (d+1.0==1.0)
{
free(is); free(js); printf("这是奇异矩阵,无法求逆矩阵。\n");
return(0);
}
/*行交换*/
if (is[k]!=k)
for (j=0; j<=n-1; j++)
{
u=k*n+j; v=is[k]*n+j;
p=a[u]; a[u]=a[v]; a[v]=p;
}
/*列交换*/
if (js[k]!=k)
for (i=0; i<=n-1; i++)
{
u=i*n+k; v=i*n+js[k];
p=a[u]; a[u]=a[v]; a[v]=p;
}
l=k*n+k;
a[l]=1.0/a[l]; /*求主元的倒数*/
/* a[kj]a[kk] -> a[kj] */
for (j=0; j<=n-1; j++)
if (j!=k)
{
u=k*n+j; a[u]=a[u]*a[l];
}
/* a[ij] - a[ik]a[kj] -> a[ij] */
for (i=0; i<=n-1; i++)
if (i!=k)
for (j=0; j<=n-1; j++)
if (j!=k)
{
u=i*n+j;
a[u]=a[u]-a[i*n+k]*a[k*n+j];
}
/* -a[ik]a[kk] -> a[ik] */
for (i=0; i<=n-1; i++)
if (i!=k)
{
u=i*n+k; a[u]=-a[u]*a[l];
}
}
for (k=n-1; k>=0; k--)
{
/*恢复列*/
if (js[k]!=k)
for (j=0; j<=n-1; j++)
{
u=k*n+j; v=js[k]*n+j;
p=a[u]; a[u]=a[v]; a[v]=p;
}
/*恢复行*/
if (is[k]!=k)
for (i=0; i<=n-1; i++)
{
u=i*n+k; v=i*n+is[k];
p=a[u]; a[u]=a[v]; a[v]=p;
}
}
free(is); free(js);
return(1);
}
main()
{
int i,j;
static double a[4][4]={ {0.2368,0.2471,0.2568,1.2671},
{1.1161,0.1254,0.1397,0.1490},
{0.1582,1.1675,0.1768,0.1871},
{0.1968,0.2071,1.2168,0.2271}};
static double b[4][4],c[4][4];
for (i=0; i<=3; i++)
for (j=0; j<=3; j++)
b[i][j]=a[i][j];
i=brinv(a,4);
if (i!=0)
{
printf("矩阵A:\n");
for (i=0; i<=3; i++)
{
for (j=0; j<=3; j++)
printf("%13.7f\t",b[i][j]);
printf("\n");
}
printf("\n");
printf("A的逆矩阵A-:\n");
for (i=0; i<=3; i++)
{
for (j=0; j<=3; j++)
printf("%13.7f\t",a[i][j]);
printf("\n");
}
printf("\n");
printf("矩阵A与其逆矩阵A-的乘积:\n");
MatrixMul(b,a,4,4,4,c);
for (i=0; i<=3; i++)
{
for (j=0; j<=3; j++)
printf("%13.7f\t",c[i][j]);
printf("\n");
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -