📄 ls2apmf.m
字号:
function APMF = ls2apmf(LS)
%LS2APMF Lifting scheme to analyzis polyphase matrix factorization.
% APMF = LS2APMF(LS) returns the Laurent matrices factorization
% APMF, corresponding to the lifting scheme LS. APMF is a cell
% array of Laurent Matrices.
%
% If LSC is a cell array of lifting schemes, APMFC = LS2APMF(LSC)
% returns a cell array of factorizations. For each k, APMFC{k}
% is a factorization of LSC{k}.
%
% Examples:
% LS = liftwave('db1')
% APMF = ls2apmf(LS);
% APMF{:}
%
% LSC = {liftwave('db1'),liftwave('db2')};
% LSC{:}
% APMFC = ls2apmf(LSC);
% APMFC{1}{:} , APMFC{2}{:}
%
% See also APMF2LS, LS2PMF.
% M. Misiti, Y. Misiti, G. Oppenheim, J.M. Poggi 11-Jun-2003.
% Last Revision: 27-Jun-2003.
% Copyright 1995-2004 The MathWorks, Inc.
% $Revision: 1.1.6.3 $ $Date: 2004/04/13 00:39:49 $
if isempty(LS) , APMF = []; return; end
cellMODE = ~(isequal(LS{1,1},'p') || ...
isequal(LS{1,1},'d') || isequal(LS,{1 1,[]}));
if cellMODE
nbFACT = length(LS);
APMF = cell(1,nbFACT);
for k = 1:nbFACT
APMF{k} = ONE_ls2apmf(LS{k});
end
else
APMF = ONE_ls2apmf(LS);
end
%---+---+---+---+---+---+---+---+---+---+---+---+---%
function APMF = ONE_ls2apmf(LS)
nbLIFT = size(LS,1);
APMF = cell(1,nbLIFT);
for jj = nbLIFT:-1:2
k = 1+nbLIFT-jj;
P = laurpoly(LS{k,2},'maxDEG',LS{k,3});
if LS{k,1}=='p'
APMF{jj} = laurmat({1,P;0,1});
else
APMF{jj} = laurmat({1,0;P,1});
end
end
APMF{1} = laurmat({LS{nbLIFT,1},0;0,LS{nbLIFT,2}});
%---+---+---+---+---+---+---+---+---+---+---+---+---%
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -