📄 gcdpoly.m
字号:
function [g,s,t] = gcdpoly(b,c,thresh)% function [g,s,t] = gcdpoly(b,c)% Compute the GCD g = (b,c) using the Euclidean algorithm% and return s,t such that bs+ct = g, where b and c are polynomials% with real coefficients%% thresh = (optional) threhold argument used to truncate small remainders% Copyright 2004 by Todd K. Moon% Permission is granted to use this program/data% for educational/research onlyrm2 = b; rm1 = c;sm2 = 1; sm1 = 0;tm2 = 0; tm1 = 1;while(any(rm1)) [q,tr] = polydiv(rm2,rm1); if(nargin==3) tr(find(abs(tr) < thresh)) = 0; end; % truncate small ts = polysub(sm2,polymult(q,sm1)); tt = polysub(tm2,polymult(q,tm1)); rm2 = rm1; sm2 = sm1; tm2 = tm1; rm1 = tr; sm1 = ts; tm1 = tt;endlc = rm2(1); % make monicg = rm2/lc;s = sm2/lc;t = tm2/lc;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -