⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 training_algorithms_multialpha.c

📁 马尔科夫模型的java版本实现
💻 C
📖 第 1 页 / 共 5 页
字号:
	      a_index_3 = get_alphabet_index(&seq_3[p], hmmp->alphabet_3, hmmp->a_size_3);	    }	    if(hmmp->nr_alphabets > 3) {	      a_index_4 = get_alphabet_index(&seq_4[p], hmmp->alphabet_4, hmmp->a_size_4);	    }	    /* get result and add to matrix */	    *(E_ulab + get_mtx_index(k, a_index, hmmp->a_size)) +=	      add_Eka_contribution_multi(hmmp, seq+1, forw_mtx, backw_mtx, p, k, multi_scoring_method);	    if(hmmp->nr_alphabets > 1) {	      *(E_ulab_2 + get_mtx_index(k, a_index_2, hmmp->a_size_2)) +=		add_Eka_contribution_multi(hmmp, seq_2+1, forw_mtx, backw_mtx, p, k, multi_scoring_method);	    }	    if(hmmp->nr_alphabets > 2) {	      *(E_ulab_3 + get_mtx_index(k, a_index_3, hmmp->a_size_3)) +=		add_Eka_contribution_multi(hmmp, seq_3+1, forw_mtx, backw_mtx, p, k, multi_scoring_method);	    }	    if(hmmp->nr_alphabets > 3) {	      *(E_ulab_4 + get_mtx_index(k, a_index_4, hmmp->a_size_4)) +=		add_Eka_contribution_multi(hmmp, seq_4+1, forw_mtx, backw_mtx, p, k, multi_scoring_method);	    }	  }	}      }      t_res_ulab = (forw_mtx + get_mtx_index(seq_len+1, hmmp->nr_v-1, hmmp->nr_v))->prob;      /* some garbage collection */      free(forw_mtx);      free(backw_mtx);      free(forw_scale);           /********* calculations using labels *************/            /* calculate forward and backward matrices */      forward_multi(hmmp, (seqsp + s)->seq_1,(seqsp + s)->seq_2, (seqsp + s)->seq_3, (seqsp + s)->seq_4,		    &forw_mtx, &forw_scale, YES, multi_scoring_method);      backward_multi(hmmp, (seqsp + s)->seq_1, (seqsp + s)->seq_2, (seqsp + s)->seq_3, (seqsp + s)->seq_4,		     &backw_mtx, forw_scale, YES, multi_scoring_method);      /* memory for forw_mtx, scale_mtx and       * backw_mtx is allocated in the functions */            /* update new_log_likelihood */      likelihood = log10((forw_mtx +			  get_mtx_index(seq_len+1, hmmp->nr_v-1, hmmp->nr_v))->prob);      for(k = 0; k <= seq_len; k++) {	likelihood = likelihood + log10(*(forw_scale + k));      }#ifdef DEBUG_BW      dump_scaling_array(k-1,forw_scale);      printf("likelihood = %f\n", likelihood);#endif            new_log_likelihood_lab += likelihood;            for(k = 0; k < hmmp->nr_v-1; k++) /* k = from vertex */ {	lp = *(hmmp->to_trans_array + k);	while(lp->vertex != END) /* l = to-vertex */ {	  for(p = 1; p <= seq_len; p++) {	    	     /* get alphabet index for c*/	    a_index = get_alphabet_index(&seq[p], hmmp->alphabet, hmmp->a_size);	    if(hmmp->nr_alphabets > 1) {	      a_index_2 = get_alphabet_index(&seq_2[p], hmmp->alphabet_2, hmmp->a_size_2);	    }	    if(hmmp->nr_alphabets > 2) {	      a_index_3 = get_alphabet_index(&seq_3[p], hmmp->alphabet_3, hmmp->a_size_3);	    }	    if(hmmp->nr_alphabets > 3) {	      a_index_4 = get_alphabet_index(&seq_4[p], hmmp->alphabet_4, hmmp->a_size_4);	    } 	    	    /* add T[k][l] contribution for this sequence */	    add_Tkl_contribution_multi(hmmp, seq+1, seq_2+1, seq_3+1, seq_4+1, forw_mtx, backw_mtx,				       forw_scale, p, k, lp, a_index, a_index_2, a_index_3, a_index_4, T_lab, YES,				       multi_scoring_method);	  }	  /* move on to next path */	  while(lp->next != NULL) {	    lp++;	  }	  lp++;	}	/* calculate E[k][a] contribution from this sequence */	if(silent_state_multi(k, hmmp) != 0) {	  for(p = 1; p <= seq_len; p++) {	    a_index = get_alphabet_index(&seq[p], hmmp->alphabet, hmmp->a_size);	    if(hmmp->nr_alphabets > 1) {	      a_index_2 = get_alphabet_index(&seq_2[p], hmmp->alphabet_2, hmmp->a_size_2);	    }	    if(hmmp->nr_alphabets > 2) {	      a_index_3 = get_alphabet_index(&seq_3[p], hmmp->alphabet_3, hmmp->a_size_3);	    }	    if(hmmp->nr_alphabets > 3) {	      a_index_4 = get_alphabet_index(&seq_4[p], hmmp->alphabet_4, hmmp->a_size_4);	    } 	    /* get result and add to matrix */	    *(E_lab + get_mtx_index(k, a_index, hmmp->a_size)) +=	      add_Eka_contribution_multi(hmmp, seq+1, forw_mtx, backw_mtx, p, k, multi_scoring_method);	    if(hmmp->nr_alphabets > 1) {	      *(E_lab_2 + get_mtx_index(k, a_index_2, hmmp->a_size_2)) +=		add_Eka_contribution_multi(hmmp, seq_2+1, forw_mtx, backw_mtx, p, k, multi_scoring_method);	    }	    if(hmmp->nr_alphabets > 2) {	      *(E_lab_3 + get_mtx_index(k, a_index_3, hmmp->a_size_3)) +=		add_Eka_contribution_multi(hmmp, seq_3+1, forw_mtx, backw_mtx, p, k, multi_scoring_method);	    }	    if(hmmp->nr_alphabets > 3) {	      *(E_lab_4 + get_mtx_index(k, a_index_4, hmmp->a_size_4)) +=		add_Eka_contribution_multi(hmmp, seq_4+1, forw_mtx, backw_mtx, p, k, multi_scoring_method);	    }	  }	}      }      /* some garbage collection */      free(seq);      if(hmmp->nr_alphabets > 1) {	free(seq_2);      }      if(hmmp->nr_alphabets > 2) {	free(seq_3);      }      if(hmmp->nr_alphabets > 3) {	free(seq_4);      }      free(forw_mtx);      free(backw_mtx);      free(forw_scale);          }    if(verbose == YES) {       printf("log likelihood diff rd %d: %f\n", iteration, new_log_likelihood_ulab - new_log_likelihood_lab);    }    #ifdef DEBUG_BW    dump_T_matrix(hmmp->nr_v, hmmp->nr_v, T);    dump_E_matrix(hmmp->nr_v, hmmp->a_size, E);#endif        /* recalculate emission expectations according to distribution groups      * by simply taking the mean of the expected emissions within this group     * for each letter in the alphabet and replacing each expectation for the     * letter with this value for every member of the distribution group */    recalculate_emiss_expectations_multi(hmmp, E_lab, 1);    if(hmmp->nr_alphabets > 1) {      recalculate_emiss_expectations_multi(hmmp, E_lab_2, 2);    }    if(hmmp->nr_alphabets > 2) {      recalculate_emiss_expectations_multi(hmmp, E_lab_3, 3);    }    if(hmmp->nr_alphabets > 3) {      recalculate_emiss_expectations_multi(hmmp, E_lab_4, 4);    }    recalculate_emiss_expectations_multi(hmmp, E_ulab, 1);    if(hmmp->nr_alphabets > 1) {      recalculate_emiss_expectations_multi(hmmp, E_ulab_2, 2);    }    if(hmmp->nr_alphabets > 2) {      recalculate_emiss_expectations_multi(hmmp, E_ulab_3, 3);    }    if(hmmp->nr_alphabets > 3) {      recalculate_emiss_expectations_multi(hmmp, E_ulab_4, 4);    }        /* recalculate transition expectations for tied transitions according     * to the same scheme as for emission distribution groups */    recalculate_trans_expectations_multi(hmmp, T_lab);    recalculate_trans_expectations_multi(hmmp, T_ulab);            /* update real T end E matrices */    calculate_TE_contributions_multi(T, E, E_2, E_3, E_4, T_lab, E_lab, E_lab_2, E_lab_3, E_lab_4, T_ulab, E_ulab,				     E_ulab_2, E_ulab_3, E_ulab_4, hmmp->emissions, hmmp->emissions_2, hmmp->emissions_3,				     hmmp->emissions_4, hmmp->transitions, hmmp->nr_v, hmmp->a_size,				     hmmp->a_size_2, hmmp->a_size_3, hmmp->a_size_4, hmmp->vertex_emiss_prior_scalers,				     hmmp->vertex_emiss_prior_scalers_2, hmmp->vertex_emiss_prior_scalers_3,				     hmmp->vertex_emiss_prior_scalers_4, iteration, hmmp->nr_alphabets);        /* check if likelihood change is small enough, then we are done */    if(fabs((new_log_likelihood_ulab - new_log_likelihood_lab) - (old_log_likelihood_ulab - old_log_likelihood_lab))       < CML_THRESHOLD && annealing_status == DONE) {      break;    }        /* if simulated annealing is used, scramble results in E and T matrices */    if(annealing == YES && temperature > ANNEAL_THRESHOLD) {      anneal_E_matrix_multi(temperature, E, hmmp, 1);      if(hmmp->nr_alphabets > 1) {	anneal_E_matrix_multi(temperature, E_2, hmmp, 2);      }      if(hmmp->nr_alphabets > 2) {	anneal_E_matrix_multi(temperature, E_3, hmmp, 3);      }      if(hmmp->nr_alphabets > 3) {	anneal_E_matrix_multi(temperature, E_4, hmmp, 4);      }      anneal_T_matrix_multi(temperature, T, hmmp);      temperature = temperature * cooling_factor;    }    if(temperature < ANNEAL_THRESHOLD) {      annealing_status = DONE;    }    for(k = 0; k < hmmp->nr_v-1; k++) /* k = from-vertex */ {      /* update transition matrix */      if(use_transition_pseudo_counts == YES) {	update_trans_mtx_pseudocount_multi(hmmp, T, k);      }      else {	update_trans_mtx_std_multi(hmmp, T, k);      }            #ifdef DEBUG_PRIORS      printf("Starting emission matrix update\n");#endif            /* update emission matrix using Dirichlet prior files if they exist*/      priorp = *(hmmp->ed_ps + k);      if(priorp != NULL && use_prior == YES) {#ifdef DEBUG_PRIORS		printf("k = %d\n", k);	printf("value = %x\n", priorp);#endif	update_emiss_mtx_prior_multi(hmmp, E, k, priorp, 1);      }      else if(use_emission_pseudo_counts == YES) /* update emissions matrix "normally" when dirichlet file is missing */ {	update_emiss_mtx_pseudocount_multi(hmmp, E, k, 1);      }      else {	update_emiss_mtx_std_multi(hmmp, E, k, 1);      }            if(hmmp->nr_alphabets > 1) {	priorp = *(hmmp->ed_ps_2 + k);	if(priorp != NULL && use_prior == YES) {	  update_emiss_mtx_prior_multi(hmmp, E_2, k, priorp, 2);	}	else if(use_emission_pseudo_counts == YES) /* update emissions matrix "normally" when dirichlet file is missing */ {	  update_emiss_mtx_pseudocount_multi(hmmp, E_2, k, 2);	}	else {	  update_emiss_mtx_std_multi(hmmp, E_2, k, 2);	}      }      if(hmmp->nr_alphabets > 2) {	priorp = *(hmmp->ed_ps_3 + k);	if(priorp != NULL && use_prior == YES) {	  update_emiss_mtx_prior_multi(hmmp, E_3, k, priorp, 3);	}	else if(use_emission_pseudo_counts == YES) /* update emissions matrix "normally" when dirichlet file is missing */ {	  update_emiss_mtx_pseudocount_multi(hmmp, E_3, k, 3);	}	else {	  update_emiss_mtx_std_multi(hmmp, E_3, k, 3);	}      }      if(hmmp->nr_alphabets > 3) {	priorp = *(hmmp->ed_ps_4 + k);	if(priorp != NULL && use_prior == YES) {	  update_emiss_mtx_prior_multi(hmmp, E_4, k, priorp, 4);	}	else if(use_emission_pseudo_counts == YES) /* update emissions matrix "normally" when dirichlet file is missing */ {	  update_emiss_mtx_pseudocount_multi(hmmp, E_4, k, 4);	}	else {	  update_emiss_mtx_std_multi(hmmp, E_4, k, 4);	}      }    }    #ifdef DEBUG_BW    dump_trans_matrix(hmmp->nr_v, hmmp->nr_v, hmmp->transitions);    dump_emiss_matrix(hmmp->nr_v, hmmp->a_size, hmmp->emissions);#endif            /* some garbage collection */    free(E);    if(hmmp->nr_alphabets > 1) {      free(E_2);    }    if(hmmp->nr_alphabets > 2) {      free(E_3);    }    if(hmmp->nr_alphabets > 3) {      free(E_4);    }    free(T);    free(T_lab);    free(E_lab);    if(hmmp->nr_alphabets > 1) {      free(E_lab_2);    }    if(hmmp->nr_alphabets > 2) {      free(E_lab_3);    }    if(hmmp->nr_alphabets > 3) {      free(E_lab_4);    }    free(T_ulab);    free(E_ulab);    if(hmmp->nr_alphabets > 1) {      free(E_ulab_2);    }    if(hmmp->nr_alphabets > 2) {      free(E_ulab_3);    }    if(hmmp->nr_alphabets > 3) {      free(E_ulab_4);    }    max_nr_iterations--;    iteration++;  }  while(max_nr_iterations > 0); /* break condition is also when log_likelihood_difference is				 * smaller than THRESHOLD, checked inside the loop for				 * better efficiency */#ifdef DEBUG_BW2  printf("exiting\n");#endif#ifdef DEBUG_BW  dump_trans_matrix(hmmp->nr_v, hmmp->nr_v, hmmp->transitions);  dump_emiss_matrix(hmmp->nr_v, hmmp->a_size, hmmp->emissions);#endif}/* implementation of the baum-welch training algorithm using dirichlet prior mixture to * calculate update of emission (and transition) matrices and using a multiple sequence * alignment as the training sequence */void extended_msa_baum_welch_dirichlet_multi(struct hmm_multi_s *hmmp, struct msa_sequences_multi_s *msa_seq_infop,					     int nr_seqs, int annealing,					     int use_gap_shares, int use_lead_columns, int use_labels, int use_transition_pseudo_counts,					     int use_emission_pseudo_counts, int normalize, int scoring_method, int use_nr_occ,					     int multi_scoring_method, double *aa_freqs,					     double *aa_freqs_2, double *aa_freqs_3, double *aa_freqs_4, int use_prior){  struct msa_sequences_multi_s *msa_seq_infop_start;  double *T, *E, *E_2, *E_3, *E_4; /* matrices for the estimated number of times		 * each transition (T) and emission (E) is used */  double *T_lab, *E_lab, *E_lab_2, *E_lab_3, *E_lab_4, *T_ulab, *E_ulab, *E_ulab_2, *E_ulab_3, *E_ulab_4;  struct forward_s *forw_mtx; /* forward matrix */  struct backward_s *backw_mtx; /* backward matrix */  double *forw_scale; /* scaling array */  int s,p,k,l,a,d,i; /* loop counters, s loops over the sequences, p over the		    * positions in the sequence, k and l over states, a over the alphabet,		    * d over the distribution groups and i is a slush variable  */  struct path_element *lp;  double t_res, t_res_1, t_res_2, t_res_3; /* for temporary results */  double t_res_4, t_res_5, t_res_6; /* for temporary results */  double e_res, e_res_1, e_res_2, e_res_3; /* for temporary results */  int seq_len; /* length of the seqences */  int a_index, a_index_2, a_index_3, a_index_4; /* holds current letters index in the alphabet */  struct letter_s *seq; /* pointer to current sequence */  double old_log_likelihood_lab, new_log_likelihood_lab;  double old_log_likelihood_ulab, new_log_likelihood_ulab; /* to calculate when to stop */  double likelihood; /* temporary variable for calculating likelihood of a sequence */  int max_nr_iterations, iteration;  double Eka_base;  /* dirichlet prior variables */  struct emission_dirichlet_s *priorp;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -