📄 training_algorithms_multialpha.c
字号:
#include <stdio.h>#include <math.h>#include <stdlib.h>#include <string.h>#include <float.h>//#include <double.h>#include "structs.h"#include "funcs.h"#define INNER_BW_THRESHOLD 0.1#define OUTER_BW_THRESHOLD 0.1#define CML_THRESHOLD 0.0002#define TRUE 1#define FALSE -1#define STARTRANDOM 0#define REST_LETTER_INDEX 0.5/* for simulated annealing */#define INIT_TEMP 1.0 #define INIT_COOL 0.8#define ANNEAL_THRESHOLD 0.1#define DONE -10#define ACTIVE 25/* for transition matrix pseudo count */#define TRANSITION_PSEUDO_VALUE 0.1#define EMISSION_PSEUDO_VALUE 1.0//#define DEBUG_BW//#define DEBUG_BW_TRANS//#define DEBUG_BW2//#define DEBUG_EXTBW//#define DEBUG_PRIORS//#define DEBUG_Tklextern int verbose;void update_emiss_mtx_std_multi(struct hmm_multi_s*, double*, int, int);void update_emiss_mtx_std_continuous_multi(struct hmm_multi_s*, double*, int, int);void update_emiss_mtx_pseudocount_multi(struct hmm_multi_s*, double*, int, int);void update_emiss_mtx_prior_multi(struct hmm_multi_s*, double*, int, struct emission_dirichlet_s*, int);void update_trans_mtx_std_multi(struct hmm_multi_s*, double*, int);void update_trans_mtx_pseudocount_multi(struct hmm_multi_s*, double*, int);void update_tot_trans_mtx_multi(struct hmm_multi_s*);void recalculate_emiss_expectations_multi(struct hmm_multi_s*, double*, int);void recalculate_trans_expectations_multi(struct hmm_multi_s *hmmp, double *T);double add_Eka_contribution_multi(struct hmm_multi_s*, struct letter_s*, struct forward_s*, struct backward_s*, int, int, int);double add_Eka_contribution_continuous_multi(struct hmm_multi_s*, struct letter_s*, struct forward_s*, struct backward_s*, int, int, int, double*, int);double add_Eka_contribution_msa_multi(struct hmm_multi_s*, struct msa_sequences_multi_s*, struct forward_s*, struct backward_s*, int, int, int, int);void add_Tkl_contribution_multi(struct hmm_multi_s*, struct letter_s*, struct letter_s*, struct letter_s*, struct letter_s*, struct forward_s*, struct backward_s*, double*, int, int, struct path_element*, int, int, int, int, double*, int use_labels, int multi_scoring_method);void add_Tkl_contribution_msa_multi(struct hmm_multi_s*, struct msa_sequences_multi_s*, struct forward_s*, struct backward_s*, double*, int, int, struct path_element*, double*, int use_gap_shares, int use_lead_columns, int i, int use_labels, int scoring_method, int normalize, int multi_scoring_method, double *aa_freqs, double *aa_freqs_2, double *aa_freqs_3, double *aa_freqs_4);void random_walk_multi(struct hmm_multi_s*, double*, double*, char**, int, int, int);int silent_state_multi(int, struct hmm_multi_s*);void anneal_E_matrix_multi(double temperature, double *E, struct hmm_multi_s *hmmp, int alphabet);void anneal_T_matrix_multi(double temperature, double *T, struct hmm_multi_s *hmmp);void calculate_TE_contributions_multi(double *T, double *E, double *E_2, double *E_3, double *E_4, double *T_lab, double *E_lab, double *E_lab_2, double *E_lab_3, double *E_lab_4, double *T_ulab, double *E_ulab, double *E_ulab_2, double *E_ulab_3, double *E_ulab_4, double *emissions, double *emissions_2, double *emissions_3, double *emissions_4, double *transitions, int nr_v, int a_size, int a_size_2, int a_size_3, int a_size_4, double *emiss_prior_scalers, double *emiss_prior_scalers_2, double *emiss_prior_scalers_3, double *emiss_prior_scalers_4, int rd, int nr_alphabets);void add_to_E_multi(double *E, double Eka_base, struct msa_letter_s *msa_seq, int p, int k, int a_size, int normalize, double *subst_mtx, int alphabet, int scoring_method, int use_nr_occ, int alphabet_type, double *emissions);/************** baum-welch training algorithm ************************//* implementation of the baum-welch training algorithm using dirichlet prior mixture to * calculate update of emission (and transition) matrices */void baum_welch_dirichlet_multi(struct hmm_multi_s *hmmp, struct sequence_multi_s *seqsp, int nr_seqs, int annealing, int use_labels, int use_transition_pseudo_counts, int use_emission_pseudo_counts, int multi_scoring_method, int use_prior){ double *T, *E, *E_2, *E_3, *E_4; /* matrices for the estimated number of times * each transition (T) and emission (E) is used */ struct forward_s *forw_mtx; /* forward matrix */ struct backward_s *backw_mtx; /* backward matrix */ double *forw_scale; /* scaling array */ int s,p,k,l,a,d; /* loop counters, s loops over the sequences, p over the * positions in the sequence, k and l over states, a over the alphabet * and d over the distribution groups */ struct path_element *lp; double t_res, t_res_1, t_res_2, t_res_3; /* for temporary results */ double t_res_4, t_res_5, t_res_6; /* for temporary results */ double e_res, e_res_1, e_res_2, e_res_3; /* for temporary results */ int seq_len; /* length of the seqences */ int a_index, a_index_2, a_index_3, a_index_4; /* holds current letters index in the alphabet */ struct letter_s *seq, *seq_2, *seq_3, *seq_4; /* pointer to current sequence */ double old_log_likelihood, new_log_likelihood; /* to calculate when to stop */ double likelihood; /* temporary variable for calculating likelihood of a sequence */ int max_nr_iterations, iteration; /* dirichlet prior variables */ struct emission_dirichlet_s *priorp; struct emission_dirichlet_s *priorp_2; struct emission_dirichlet_s *priorp_3; struct emission_dirichlet_s *priorp_4; /* simulated annealing variables */ double temperature; double cooling_factor; int annealing_status; /* some initialization */ old_log_likelihood = 9999.0; new_log_likelihood = 9999.0; max_nr_iterations = 20; iteration = 1; if(annealing == YES) { temperature = INIT_TEMP; cooling_factor = INIT_COOL; annealing_status = ACTIVE; } else { annealing_status = DONE; } do { T = (double*)(malloc_or_die(hmmp->nr_v * hmmp->nr_v * sizeof(double))); if(hmmp->alphabet_type == DISCRETE) { E = (double*)(malloc_or_die(hmmp->nr_v * hmmp->a_size * sizeof(double))); } else { E = (double*)(malloc_or_die(hmmp->nr_v * (hmmp->a_size + 1) * sizeof(double))); } if(hmmp->nr_alphabets > 1) { if(hmmp->alphabet_type_2 == DISCRETE) { E_2 = (double*)(malloc_or_die(hmmp->nr_v * hmmp->a_size_2 * sizeof(double))); } else { E_2 = (double*)(malloc_or_die(hmmp->nr_v * (hmmp->a_size_2 + 1) * sizeof(double))); } } if(hmmp->nr_alphabets > 2) { if(hmmp->alphabet_type_3 == DISCRETE) { E_3 = (double*)(malloc_or_die(hmmp->nr_v * hmmp->a_size_3 * sizeof(double))); } else { E_3 = (double*)(malloc_or_die(hmmp->nr_v * (hmmp->a_size_3 + 1) * sizeof(double))); } } if(hmmp->nr_alphabets > 3) { if(hmmp->alphabet_type_4 == DISCRETE) { E_4 = (double*)(malloc_or_die(hmmp->nr_v * hmmp->a_size_4 * sizeof(double))); } else { E_4 = (double*)(malloc_or_die(hmmp->nr_v * (hmmp->a_size_4 + 1) * sizeof(double))); } } old_log_likelihood = new_log_likelihood; new_log_likelihood = 0.0; for(s = 0; s < nr_seqs; s++) { /* Convert sequence to 1...L for easier indexing */ seq_len = (seqsp + s)->length; seq = (struct letter_s*) (malloc_or_die((seq_len + 2) * sizeof(struct letter_s))); memcpy(seq+1, (seqsp + s)->seq_1, seq_len * sizeof(struct letter_s)); if(hmmp->nr_alphabets > 1) { seq_2 = (struct letter_s*) (malloc_or_die((seq_len + 2) * sizeof(struct letter_s))); memcpy(seq_2+1, (seqsp + s)->seq_2, seq_len * sizeof(struct letter_s)); } if(hmmp->nr_alphabets > 2) { seq_3 = (struct letter_s*) malloc_or_die(((seq_len + 2) * sizeof(struct letter_s))); memcpy(seq_3+1, (seqsp + s)->seq_3, seq_len * sizeof(struct letter_s)); } if(hmmp->nr_alphabets > 3) { seq_4 = (struct letter_s*) malloc_or_die(((seq_len + 2) * sizeof(struct letter_s))); memcpy(seq_4+1, (seqsp + s)->seq_4, seq_len * sizeof(struct letter_s)); } /* calculate forward and backward matrices */ forward_multi(hmmp, (seqsp + s)->seq_1,(seqsp + s)->seq_2, (seqsp + s)->seq_3, (seqsp + s)->seq_4, &forw_mtx, &forw_scale, use_labels, multi_scoring_method); backward_multi(hmmp, (seqsp + s)->seq_1, (seqsp + s)->seq_2, (seqsp + s)->seq_3, (seqsp + s)->seq_4, &backw_mtx, forw_scale, use_labels, multi_scoring_method); /* memory for forw_mtx, scale_mtx and * backw_mtx is allocated in the functions */ /* update new_log_likelihood */ likelihood = log10((forw_mtx + get_mtx_index(seq_len+1, hmmp->nr_v-1, hmmp->nr_v))->prob); for(k = 0; k <= seq_len; k++) { likelihood = likelihood + log10(*(forw_scale + k)); }#ifdef DEBUG_BW dump_scaling_array(k-1,forw_scale); printf("likelihood = %f\n", likelihood);#endif new_log_likelihood += likelihood; for(k = 0; k < hmmp->nr_v-1; k++) /* k = from vertex */ { lp = *(hmmp->to_trans_array + k); while(lp->vertex != END) /* l = to-vertex */ { for(p = 1; p <= seq_len; p++) { /* get alphabet index for c (add replacement letter stuff here) */ if(hmmp->alphabet_type == DISCRETE) { a_index = get_alphabet_index(&seq[p], hmmp->alphabet, hmmp->a_size); } if(hmmp->nr_alphabets > 1 && hmmp->alphabet_type_2 == DISCRETE) { a_index_2 = get_alphabet_index(&seq_2[p], hmmp->alphabet_2, hmmp->a_size_2); } if(hmmp->nr_alphabets > 2 && hmmp->alphabet_type_3 == DISCRETE) { a_index_3 = get_alphabet_index(&seq_3[p], hmmp->alphabet_3, hmmp->a_size_3); } if(hmmp->nr_alphabets > 3 && hmmp->alphabet_type_4 == DISCRETE) { a_index_4 = get_alphabet_index(&seq_4[p], hmmp->alphabet_4, hmmp->a_size_4); } /* add T[k][l] contribution for this sequence */ add_Tkl_contribution_multi(hmmp, seq+1, seq_2+1, seq_3+1, seq_4+1, forw_mtx, backw_mtx, forw_scale, p, k, lp, a_index, a_index_2, a_index_3, a_index_4, T, use_labels, multi_scoring_method); /* continuous? */ } /* move on to next path */ while(lp->next != NULL) { lp++; } lp++; } /* calculate E[k][a] contribution from this sequence */ if(silent_state_multi(k, hmmp) != 0) { for(p = 1; p <= seq_len; p++) { if(hmmp->alphabet_type == DISCRETE) { a_index = get_alphabet_index(&seq[p], hmmp->alphabet, hmmp->a_size); *(E + get_mtx_index(k, a_index, hmmp->a_size)) += add_Eka_contribution_multi(hmmp, seq+1, forw_mtx, backw_mtx, p, k, multi_scoring_method); } else { add_Eka_contribution_continuous_multi(hmmp, seq+1, forw_mtx, backw_mtx, p, k, multi_scoring_method, E, 1); } if(hmmp->nr_alphabets > 1 && hmmp->alphabet_type_2 == DISCRETE) { a_index_2 = get_alphabet_index(&seq_2[p], hmmp->alphabet_2, hmmp->a_size_2); *(E_2 + get_mtx_index(k, a_index_2, hmmp->a_size_2)) += add_Eka_contribution_multi(hmmp, seq_2+1, forw_mtx, backw_mtx, p, k, multi_scoring_method); } else if(hmmp->nr_alphabets > 1) { add_Eka_contribution_continuous_multi(hmmp, seq_2+1, forw_mtx, backw_mtx, p, k, multi_scoring_method, E_2, 2); } if(hmmp->nr_alphabets > 2 && hmmp->alphabet_type_3 == DISCRETE) { a_index_3 = get_alphabet_index(&seq_3[p], hmmp->alphabet_3, hmmp->a_size_3); *(E_3 + get_mtx_index(k, a_index_3, hmmp->a_size_3)) += add_Eka_contribution_multi(hmmp, seq_3+1, forw_mtx, backw_mtx, p, k, multi_scoring_method); } else if(hmmp->nr_alphabets > 2) { add_Eka_contribution_continuous_multi(hmmp, seq_3+1, forw_mtx, backw_mtx, p, k, multi_scoring_method, E_3, 3); } if(hmmp->nr_alphabets > 3 && hmmp->alphabet_type_4 == DISCRETE) { a_index_4 = get_alphabet_index(&seq_4[p], hmmp->alphabet_4, hmmp->a_size_4); *(E_4 + get_mtx_index(k, a_index_4, hmmp->a_size_4)) += add_Eka_contribution_multi(hmmp, seq_4+1, forw_mtx, backw_mtx, p, k, multi_scoring_method); } else if(hmmp->nr_alphabets > 3) { add_Eka_contribution_continuous_multi(hmmp, seq_4+1, forw_mtx, backw_mtx, p, k, multi_scoring_method, E_4, 4); } } } } /* some garbage collection */ free(seq); if(hmmp->nr_alphabets > 1) { free(seq_2); } if(hmmp->nr_alphabets > 2) { free(seq_3); } if(hmmp->nr_alphabets > 3) { free(seq_4); } free(forw_mtx); free(backw_mtx); free(forw_scale); } if(verbose == YES) { printf("log likelihood rd %d: %f\n", iteration, new_log_likelihood); } #ifdef DEBUG_BW2 dump_T_matrix(hmmp->nr_v, hmmp->nr_v, T); dump_E_matrix(hmmp->nr_v, hmmp->a_size, E); //dump_E_matrix(hmmp->nr_v, hmmp->a_size_2 + 1, E_2);#endif /* check if likelihood change is small enough, then we are done */ if(fabs(new_log_likelihood - old_log_likelihood) < INNER_BW_THRESHOLD && annealing_status == DONE) { break; } /* if simulated annealing is used, scramble results in E and T matrices */ if(annealing == YES && temperature > ANNEAL_THRESHOLD) { anneal_E_matrix_multi(temperature, E, hmmp, 1); if(hmmp->nr_alphabets > 1) { anneal_E_matrix_multi(temperature, E_2, hmmp, 2); } if(hmmp->nr_alphabets > 2) { anneal_E_matrix_multi(temperature, E_3, hmmp, 3); } if(hmmp->nr_alphabets > 3) { anneal_E_matrix_multi(temperature, E_4, hmmp, 4); } anneal_T_matrix_multi(temperature, T, hmmp); temperature = temperature * cooling_factor; } if(temperature < ANNEAL_THRESHOLD) { annealing_status = DONE; } /* recalculate emission expectations according to distribution groups * by simply taking the mean of the expected emissions within this group * for each letter in the alphabet and replacing each expectation for the * letter with this value for every member of the distribution group */ recalculate_emiss_expectations_multi(hmmp, E, 1); if(hmmp->nr_alphabets > 1) { recalculate_emiss_expectations_multi(hmmp, E_2, 2); } if(hmmp->nr_alphabets > 2) { recalculate_emiss_expectations_multi(hmmp, E_3, 3); } if(hmmp->nr_alphabets > 3) { recalculate_emiss_expectations_multi(hmmp, E_4, 4); } /* recalculate transition expectations for tied transitions according * to the same scheme as for emission distribution groups */ recalculate_trans_expectations_multi(hmmp, T); for(k = 0; k < hmmp->nr_v-1; k++) /* k = from-vertex */ { /* update transition matrix */ if(use_transition_pseudo_counts == YES) { update_trans_mtx_pseudocount_multi(hmmp, T, k); } else { update_trans_mtx_std_multi(hmmp, T, k); }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -