⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 stm32f0xx_rcc.c

📁 stm32f0固件库
💻 C
📖 第 1 页 / 共 4 页
字号:
  if (NewState != DISABLE)
  {
    RCC->AHBENR |= RCC_AHBPeriph;
  }
  else
  {
    RCC->AHBENR &= ~RCC_AHBPeriph;
  }
}

/**
  * @brief  Enables or disables the High Speed APB (APB2) peripheral clock.
  * @note   After reset, the peripheral clock (used for registers read/write access)
  *         is disabled and the application software has to enable this clock before 
  *         using it.
  * @param  RCC_APB2Periph: specifies the APB2 peripheral to gates its clock.
  *         This parameter can be any combination of the following values:
  *             @arg RCC_APB2Periph_SYSCFG:      SYSCFG clock
  *             @arg RCC_APB2Periph_ADC1:        ADC1 clock
  *             @arg RCC_APB2Periph_TIM1:        TIM1 clock
  *             @arg RCC_APB2Periph_SPI1:        SPI1 clock
  *             @arg RCC_APB2Periph_USART1:      USART1 clock
  *             @arg RCC_APB2Periph_TIM15:       TIM15 clock
  *             @arg RCC_APB2Periph_TIM16:       TIM16 clock
  *             @arg RCC_APB2Periph_TIM17:       TIM17 clock
  *             @arg RCC_APB2Periph_DBGMCU:      DBGMCU clock
  * @param  NewState: new state of the specified peripheral clock.
  *         This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_APB2PeriphClockCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->APB2ENR |= RCC_APB2Periph;
  }
  else
  {
    RCC->APB2ENR &= ~RCC_APB2Periph;
  }
}

/**
  * @brief  Enables or disables the Low Speed APB (APB1) peripheral clock.
  * @note   After reset, the peripheral clock (used for registers read/write access)
  *         is disabled and the application software has to enable this clock before 
  *         using it.
  * @param  RCC_APB1Periph: specifies the APB1 peripheral to gates its clock.
  *         This parameter can be any combination of the following values:
  *           @arg RCC_APB1Periph_TIM2:      TIM2 clock
  *           @arg RCC_APB1Periph_TIM3:      TIM3 clock
  *           @arg RCC_APB1Periph_TIM6:      TIM6 clock
  *           @arg RCC_APB1Periph_TIM14:     TIM14 clock
  *           @arg RCC_APB1Periph_WWDG:      WWDG clock
  *           @arg RCC_APB1Periph_SPI2:      SPI2 clock
  *           @arg RCC_APB1Periph_USART2:    USART2 clock
  *           @arg RCC_APB1Periph_I2C1:      I2C1 clock
  *           @arg RCC_APB1Periph_I2C2:      I2C2 clock
  *           @arg RCC_APB1Periph_PWR:       PWR clock
  *           @arg RCC_APB1Periph_DAC:       DAC clock
  *           @arg RCC_APB1Periph_CEC:       CEC clock                               
  * @param  NewState: new state of the specified peripheral clock.
  *         This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_APB1PeriphClockCmd(uint32_t RCC_APB1Periph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->APB1ENR |= RCC_APB1Periph;
  }
  else
  {
    RCC->APB1ENR &= ~RCC_APB1Periph;
  }
}

/**
  * @brief  Forces or releases AHB peripheral reset.
  * @param  RCC_AHBPeriph: specifies the AHB peripheral to reset.
  *         This parameter can be any combination of the following values:
  *             @arg RCC_AHBPeriph_GPIOA:         GPIOA clock
  *             @arg RCC_AHBPeriph_GPIOB:         GPIOB clock
  *             @arg RCC_AHBPeriph_GPIOC:         GPIOC clock
  *             @arg RCC_AHBPeriph_GPIOD:         GPIOD clock
  *             @arg RCC_AHBPeriph_GPIOF:         GPIOF clock
  *             @arg RCC_AHBPeriph_TS:            TS clock
  * @param  NewState: new state of the specified peripheral reset.
  *         This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_AHBPeriphResetCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_AHB_RST_PERIPH(RCC_AHBPeriph));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->AHBRSTR |= RCC_AHBPeriph;
  }
  else
  {
    RCC->AHBRSTR &= ~RCC_AHBPeriph;
  }
}

/**
  * @brief  Forces or releases High Speed APB (APB2) peripheral reset.
  * @param  RCC_APB2Periph: specifies the APB2 peripheral to reset.
  *         This parameter can be any combination of the following values:
  *             @arg RCC_APB2Periph_SYSCFG:      SYSCFG clock
  *             @arg RCC_APB2Periph_ADC1:        ADC1 clock
  *             @arg RCC_APB2Periph_TIM1:        TIM1 clock
  *             @arg RCC_APB2Periph_SPI1:        SPI1 clock
  *             @arg RCC_APB2Periph_USART1:      USART1 clock
  *             @arg RCC_APB2Periph_TIM15:       TIM15 clock
  *             @arg RCC_APB2Periph_TIM16:       TIM16 clock
  *             @arg RCC_APB2Periph_TIM17:       TIM17 clock
  *             @arg RCC_APB2Periph_DBGMCU:      DBGMCU clock
  * @param  NewState: new state of the specified peripheral reset.
  *         This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_APB2PeriphResetCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->APB2RSTR |= RCC_APB2Periph;
  }
  else
  {
    RCC->APB2RSTR &= ~RCC_APB2Periph;
  }
}

/**
  * @brief  Forces or releases Low Speed APB (APB1) peripheral reset.
  * @param  RCC_APB1Periph: specifies the APB1 peripheral to reset.
  *         This parameter can be any combination of the following values:
  *           @arg RCC_APB1Periph_TIM2:      TIM2 clock
  *           @arg RCC_APB1Periph_TIM3:      TIM3 clock
  *           @arg RCC_APB1Periph_TIM6:      TIM6 clock
  *           @arg RCC_APB1Periph_TIM14:     TIM14 clock
  *           @arg RCC_APB1Periph_WWDG:      WWDG clock
  *           @arg RCC_APB1Periph_SPI2:      SPI2 clock
  *           @arg RCC_APB1Periph_USART2:    USART2 clock
  *           @arg RCC_APB1Periph_I2C1:      I2C1 clock
  *           @arg RCC_APB1Periph_I2C2:      I2C2 clock
  *           @arg RCC_APB1Periph_PWR:       PWR clock
  *           @arg RCC_APB1Periph_DAC:       DAC clock
  *           @arg RCC_APB1Periph_CEC:       CEC clock
  * @param  NewState: new state of the specified peripheral clock.
  *         This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_APB1PeriphResetCmd(uint32_t RCC_APB1Periph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->APB1RSTR |= RCC_APB1Periph;
  }
  else
  {
    RCC->APB1RSTR &= ~RCC_APB1Periph;
  }
}

/**
  * @}
  */

/** @defgroup RCC_Group4 Interrupts and flags management functions
 *  @brief   Interrupts and flags management functions 
 *
@verbatim
 ===============================================================================
             ##### Interrupts and flags management functions #####
 ===============================================================================
@endverbatim
  * @{
  */

/**
  * @brief  Enables or disables the specified RCC interrupts.
  * @note   The CSS interrupt doesn't have an enable bit; once the CSS is enabled
  *         and if the HSE clock fails, the CSS interrupt occurs and an NMI is
  *         automatically generated. The NMI will be executed indefinitely, and 
  *         since NMI has higher priority than any other IRQ (and main program)
  *         the application will be stacked in the NMI ISR unless the CSS interrupt
  *         pending bit is cleared.
  * @param  RCC_IT: specifies the RCC interrupt sources to be enabled or disabled.
  *         This parameter can be any combination of the following values:
  *              @arg RCC_IT_LSIRDY: LSI ready interrupt
  *              @arg RCC_IT_LSERDY: LSE ready interrupt
  *              @arg RCC_IT_HSIRDY: HSI ready interrupt
  *              @arg RCC_IT_HSERDY: HSE ready interrupt
  *              @arg RCC_IT_PLLRDY: PLL ready interrupt
  *              @arg RCC_IT_HSI14RDY: HSI14 ready interrupt
  * @param  NewState: new state of the specified RCC interrupts.
  *         This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_ITConfig(uint8_t RCC_IT, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_IT(RCC_IT));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  
  if (NewState != DISABLE)
  {
    /* Perform Byte access to RCC_CIR[13:8] bits to enable the selected interrupts */
    *(__IO uint8_t *) CIR_BYTE1_ADDRESS |= RCC_IT;
  }
  else
  {
    /* Perform Byte access to RCC_CIR[13:8] bits to disable the selected interrupts */
    *(__IO uint8_t *) CIR_BYTE1_ADDRESS &= (uint8_t)~RCC_IT;
  }
}

/**
  * @brief  Checks whether the specified RCC flag is set or not.
  * @param  RCC_FLAG: specifies the flag to check.
  *         This parameter can be one of the following values:
  *             @arg RCC_FLAG_HSIRDY: HSI oscillator clock ready  
  *             @arg RCC_FLAG_HSERDY: HSE oscillator clock ready
  *             @arg RCC_FLAG_PLLRDY: PLL clock ready
  *             @arg RCC_FLAG_LSERDY: LSE oscillator clock ready
  *             @arg RCC_FLAG_LSIRDY: LSI oscillator clock ready
  *             @arg RCC_FLAG_OBLRST: Option Byte Loader (OBL) reset 
  *             @arg RCC_FLAG_PINRST: Pin reset
  *             @arg RCC_FLAG_V18PWRRSTF:  V1.8 power domain reset  
  *             @arg RCC_FLAG_PORRST: POR/PDR reset
  *             @arg RCC_FLAG_SFTRST: Software reset
  *             @arg RCC_FLAG_IWDGRST: Independent Watchdog reset
  *             @arg RCC_FLAG_WWDGRST: Window Watchdog reset
  *             @arg RCC_FLAG_LPWRRST: Low Power reset
  *             @arg RCC_FLAG_HSI14RDY: HSI14 oscillator clock ready  
  * @retval The new state of RCC_FLAG (SET or RESET).
  */
FlagStatus RCC_GetFlagStatus(uint8_t RCC_FLAG)
{
  uint32_t tmp = 0;
  uint32_t statusreg = 0;
  FlagStatus bitstatus = RESET;

  /* Check the parameters */
  assert_param(IS_RCC_FLAG(RCC_FLAG));

  /* Get the RCC register index */
  tmp = RCC_FLAG >> 5;

  if (tmp == 0)               /* The flag to check is in CR register */
  {
    statusreg = RCC->CR;
  }
  else if (tmp == 1)          /* The flag to check is in BDCR register */
  {
    statusreg = RCC->BDCR;
  }
  else if (tmp == 2)          /* The flag to check is in CSR register */
  {
    statusreg = RCC->CSR;
  }
  else                        /* The flag to check is in CR2 register */
  {
    statusreg = RCC->CR2;
  }    

  /* Get the flag position */
  tmp = RCC_FLAG & FLAG_MASK;

  if ((statusreg & ((uint32_t)1 << tmp)) != (uint32_t)RESET)
  {
    bitstatus = SET;
  }
  else
  {
    bitstatus = RESET;
  }
  /* Return the flag status */
  return bitstatus;
}

/**
  * @brief  Clears the RCC reset flags.
  *         The reset flags are: RCC_FLAG_OBLRST, RCC_FLAG_PINRST, RCC_FLAG_V18PWRRSTF,
  *         RCC_FLAG_PORRST, RCC_FLAG_SFTRST, RCC_FLAG_IWDGRST, RCC_FLAG_WWDGRST,
  *         RCC_FLAG_LPWRRST.
  * @param  None
  * @retval None
  */
void RCC_ClearFlag(void)
{
  /* Set RMVF bit to clear the reset flags */
  RCC->CSR |= RCC_CSR_RMVF;
}

/**
  * @brief  Checks whether the specified RCC interrupt has occurred or not.
  * @param  RCC_IT: specifies the RCC interrupt source to check.
  *         This parameter can be one of the following values:
  *             @arg RCC_IT_LSIRDY: LSI ready interrupt
  *             @arg RCC_IT_LSERDY: LSE ready interrupt
  *             @arg RCC_IT_HSIRDY: HSI ready interrupt
  *             @arg RCC_IT_HSERDY: HSE ready interrupt
  *             @arg RCC_IT_PLLRDY: PLL ready interrupt
  *             @arg RCC_IT_HSI14RDY: HSI14 ready interrupt 
  *             @arg RCC_IT_CSS: Clock Security System interrupt
  * @retval The new state of RCC_IT (SET or RESET).
  */
ITStatus RCC_GetITStatus(uint8_t RCC_IT)
{
  ITStatus bitstatus = RESET;
  
  /* Check the parameters */
  assert_param(IS_RCC_GET_IT(RCC_IT));
  
  /* Check the status of the specified RCC interrupt */
  if ((RCC->CIR & RCC_IT) != (uint32_t)RESET)
  {
    bitstatus = SET;
  }
  else
  {
    bitstatus = RESET;
  }
  /* Return the RCC_IT status */
  return  bitstatus;
}

/**
  * @brief  Clears the RCC's interrupt pending bits.
  * @param  RCC_IT: specifies the interrupt pending bit to clear.
  *         This parameter can be any combination of the following values:
  *             @arg RCC_IT_LSIRDY: LSI ready interrupt
  *             @arg RCC_IT_LSERDY: LSE ready interrupt
  *             @arg RCC_IT_HSIRDY: HSI ready interrupt
  *             @arg RCC_IT_HSERDY: HSE ready interrupt
  *             @arg RCC_IT_PLLRDY: PLL ready interrupt
  *             @arg RCC_IT_HSI14RDY: HSI14 ready interrupt  
  *             @arg RCC_IT_CSS: Clock Security System interrupt
  * @retval None
  */
void RCC_ClearITPendingBit(uint8_t RCC_IT)
{
  /* Check the parameters */
  assert_param(IS_RCC_CLEAR_IT(RCC_IT));
  
  /* Perform Byte access to RCC_CIR[23:16] bits to clear the selected interrupt
     pending bits */
  *(__IO uint8_t *) CIR_BYTE2_ADDRESS = RCC_IT;
}

/**
  * @}
  */

/**
  * @}
  */

/**
  * @}
  */

/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -