📄 emd_fmsin.m
字号:
% EMD_FMSIN.M%% P. Flandrin, Mar. 13, 2003%% computes and displays EMD for the sum of 2 sinusoidal % FM's + 1 Gaussian logon %% displays reassigned spectrograms of the sum signal and of % the 3 first modes extracted%% produces Figure 1 in%% G. Rilling, P. Flandrin and P. Gon鏰lv鑣% "On Empirical Mode Decomposition and its algorithms"% IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing% NSIP-03, Grado (I), June 2003N = 2000;% # of data samplesT = 1:4:N;t = 1:N;p = N/2;% period of the 2 sinusoidal FM's% sinusoidal FM 1fmin1 = 1/64;% min frequencyfmax1 = 1.5*1/8;% max frequencyx1 = fmsin(N,fmin1,fmax1,p,N/2,fmax1);% sinusoidal FM 1fmin2 = 1/32;% min frequencyfmax2 = 1.5*1/4;% max frequencyx2 = fmsin(N,fmin2,fmax2,p,N/2,fmax2);% logonf0 = 1.5*1/16;% center frequencyx3 = amgauss(N,N/2,N/8).*fmconst(N,f0);a1 = 1;a2 = 1;a3 = 1;x = real(a1*x1+a2*x2+a3*x3);x = x/max(abs(x));[imf,ort,nbits] = emd(x,t);emd_visu(x,t,imf,1);figure(1)% time-frequency distributionsNf = 256;% # of frequency binsNh = 127;% short-time window lengthw = window('Kaiser',Nh);[s,rs] = tfrrsp(x,T,Nf,w,1);[s,rs1] = tfrrsp(imf(1,:)',T,Nf,w,1);[s,rs2] = tfrrsp(imf(2,:)',T,Nf,w,1);[s,rs3] = tfrrsp(imf(3,:)',T,Nf,w,1);figure(4)subplot(221)imagesc(flipud(rs(1:128,:)))set(gca,'YTick',[]);set(gca,'XTick',[])xlabel('time')ylabel('frequency')title('signal')subplot(222)imagesc(flipud(rs1(1:128,:)))set(gca,'YTick',[]);set(gca,'XTick',[])xlabel('time')ylabel('frequency')title('mode #1')subplot(223)imagesc(flipud(rs2(1:128,:)))set(gca,'YTick',[]);set(gca,'XTick',[])xlabel('time')ylabel('frequency')title('mode #2')subplot(224)imagesc(flipud(rs3(1:128,:)))set(gca,'YTick',[]);set(gca,'XTick',[])xlabel('time')ylabel('frequency')title('mode #3')%colormap(flipud(gray))colormap(jet)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -