⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sreestimate.h

📁 一个通用的隐性马尔可夫C代码库 开发环境:C语言 简要说明:这是一个通用的隐性马尔可夫C代码库
💻 H
字号:
/*-----------------------------------------------------------------------------  author       : Bernhard Knab  filename     : ghmm/ghmm/sreestimate.h  created      : TIME: 17:18:06     DATE: Mon 15. November 1999  $Id: sreestimate.h,v 1.8 2003/12/19 15:06:17 cic99 Exp $Copyright (C) 1998-2001, ZAIK/ZPR, Universit鋞 zu K鰈nThis program is free software; you can redistribute it and/or modifyit under the terms of the GNU General Public License as published bythe Free Software Foundation; either version 2 of the License, or(at your option) any later version.This program is distributed in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied warranty ofMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See theGNU General Public License for more details.You should have received a copy of the GNU General Public Licensealong with this program; if not, write to the Free SoftwareFoundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA------------------------------------------------------------------------------*/#ifndef SREESTIMATE_H#define SREESTIMATE_H#ifdef __cplusplusextern "C" {#endif#include <ghmm/smodel.h>/**@name SHMM-Baum-Welch-Algorithm *//*@{ (Doc++-Group: sreestimate) *//** Baum-Welch-Algorithm for parameter reestimation (training) in    a continuous (continuous output functions) HMM. Scaled version    for multiple sequences. Sequences may carry different weights     For reference see:      Rabiner, L.R.: "`A Tutorial on Hidden {Markov} Models and Selected                Applications in Speech Recognition"', Proceedings of the IEEE,	77, no 2, 1989, pp 257--285    *//** @name struct smosqd_t    structure that combines a continuous model (smo) and an integer    sequence struct. Is used by sreestimate\_baum\_welch for     parameter reestimation. */struct smosqd_t {  /** pointer of continuous model*/  smodel *smo;  /** sequence\_d\__t pointer */  sequence_d_t *sqd;  /** calculated log likelihood */  double* logp;  /** leave reestimation loop if diff. between successive logp values       is smaller than eps */  double eps;  /** max. no of iterations */  int max_iter;}; typedef struct smosqd_t smosqd_t;typedef struct local_store_t {  int cos;  double *pi_num;  double pi_denom;  double ***a_num;  double **a_denom;  double **c_num;   double *c_denom;  double **mue_num;  double **u_num;  double **mue_u_denom; /* mue-denom. = u-denom. for sym. normal density*/  double **sum_gt_otot; /* for truncated normal density */  double **sum_gt_logb; /* Control according to Q-function */} local_store_t;/**  Baum-Welch Algorithm for SHMMs.  Training of model parameter with multiple double sequences (incl. scaling).  New parameters set directly in hmm (no storage of previous values!). Matrices  are allocated with stat_matrix_d_alloc.  @return            0/-1 success/error  @param cs         initial model and train sequences  */int sreestimate_baum_welch(smosqd_t *cs);int sreestimate_one_step(smodel *smo, local_store_t *r, int seq_number,int *T,  double **O, double *log_p, double *seq_w);#ifdef __cplusplus}#endif#endif /* SREESTIMATE_H *//*@} (Doc++-Group: sreestimate) */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -