⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 reestimate.h

📁 一个通用的隐性马尔可夫C代码库 开发环境:C语言 简要说明:这是一个通用的隐性马尔可夫C代码库
💻 H
字号:
/*******************************************************************************  author       : Bernhard Knab  filename     : ghmm/ghmm/reestimate.h  created      : TIME: 12:39:14     DATE: Wed 18. February 1998  $Id: reestimate.h,v 1.8 2004/04/07 09:43:30 cic99 Exp $Copyright (C) 1998-2001, ZAIK/ZPR, Universit鋞 zu K鰈nThis program is free software; you can redistribute it and/or modifyit under the terms of the GNU General Public License as published bythe Free Software Foundation; either version 2 of the License, or(at your option) any later version.This program is distributed in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied warranty ofMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See theGNU General Public License for more details.You should have received a copy of the GNU General Public Licensealong with this program; if not, write to the Free SoftwareFoundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA*******************************************************************************/#ifndef REESTIMATE_H#define REESTIMATE_H#include <ghmm/sequence.h>#include <ghmm/model.h>#ifdef __cplusplusextern "C" {#endif/**@name Baum-Welch-Algorithmus *//*@{ (Doc++-Group: reestimate) *//** Baum-Welch-Algorithm for parameter reestimation (training) in    a discrete (discrete output functions) HMM. Scaled version    for multiple sequences, alpha and beta matrices are allocated with	stat_matrix_d_alloc     New parameters set directly in hmm (no storage of previous values!).    For reference see:      Rabiner, L.R.: "`A Tutorial on Hidden {Markov} Models and Selected                Applications in Speech Recognition"', Proceedings of the IEEE,	77, no 2, 1989, pp 257--285      @return            0/-1 success/error  @param mo          initial model  @param sq          training sequences  */int reestimate_baum_welch(model *mo, sequence_t *sq);/** Just like reestimate_baum_welch, but you can limit    the maximum number of steps  @return            0/-1 success/error  @param mo          initial model  @param sq          training sequences  @param max_step    maximal number of Baum-Welch steps  @param likelihood_delta minimal improvement in likelihood required for carrying on. Relative value  to log likelihood  */int reestimate_baum_welch_nstep(model *mo, sequence_t *sq, int max_step, double likelihood_delta);/** Update the emissions according to the tie groups by computing the mean    values within all groups.    */void reestimate_update_tie_groups(model *mo);#ifdef __cplusplus}#endif#endif /* REESTIMATE_H *//*@} (Doc++-Group: reestimate) */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -