⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 scluster.h

📁 一个通用的隐性马尔可夫C代码库 开发环境:C语言 简要说明:这是一个通用的隐性马尔可夫C代码库
💻 H
字号:
/*-----------------------------------------------------------------------------  author       : Bernhard Knab, Benjamin Georgi  filename     : ghmm/ghmm/scluster.h  created      : TIME: 15:53:53     DATE: Tue 16. November 1999  $Id: scluster.h,v 1.9 2003/10/10 13:10:13 cic99 Exp $Copyright (C) 1998-2001, ZAIK/ZPR, Universit鋞 zu K鰈nThis program is free software; you can redistribute it and/or modifyit under the terms of the GNU General Public License as published bythe Free Software Foundation; either version 2 of the License, or(at your option) any later version.This program is distributed in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied warranty ofMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See theGNU General Public License for more details.You should have received a copy of the GNU General Public Licensealong with this program; if not, write to the Free SoftwareFoundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA------------------------------------------------------------------------------*/#ifndef SCLUSTER_H#define SCLUSTER_H#include <ghmm/sequence.h>#include <ghmm/smodel.h>#include <ghmm/sreestimate.h>#ifdef __cplusplusextern "C" {#endif/**   @name scluster *//*@{ */#define CLASSIFY 0 /* Switch for Classificator: 0 == MD, 1 == MAW *//**   Cluster structure: All models and sequences. */struct scluster_t{  /**   Vector of SHMMs pointers */  smodel **smo;  /**     Vector of sequence_t pointers; to store the sequences, that     belong to the models */  sequence_d_t **smo_seq;  /**     Number of models to read in */  int smo_number;  /**     Number of sequences for each model */  long *seq_counter;  /**     log(P) for the model */  double *smo_Z_MD;  /** a posteriori probability for the Modelle to calculate the objective      fucntion in case of a MAW classificator. Is calculated using smap_bayes */  double *smo_Z_MAW;};/** */typedef struct scluster_t scluster_t;/**   Frees the memory allocated for a scluster_t struct.   @return 0 for success; -1 for error   @param scl pointer to scl struct*/int scluster_t_free(scluster_t *scl);/**   Writes out the final models.   @return 0 for success; -1 for error   @param cl cluster of models to write   @param sqd   @param outfile output file   @param out_filename name of the output file */int scluster_out(scluster_t *cl, sequence_d_t *sqd, FILE *outfile,		 char *argv[]);/**   Avoids empty models going out as outputs by assigning them a random    sequence. This may lead to a produce of a new empty model - therefore   change out sequences until a non empty model is found. (Quit after 100    iterations to avoid an infinite loop).    @return 0 for success; -1 for error   @param sqd sequences to generate the model from   @param cl cluster for the models */int scluster_avoid_empty_smodel(sequence_d_t *sqd, scluster_t *cl);/**   Makes a cluster and reestimates the HMMs.   @return 0 for success; -1 for error   @param argv vector of input files, one with sequences, one with models,    one for output and one with labels for the sequences - in this order. */int scluster_hmm(char *argv[]);/**   Updates the cluster with additional sequences.   @return 0 for success; -1 for error   @param cl cluster to update   @param sqd sequences to update the cluster with */int scluster_update(scluster_t *cl, sequence_d_t *sqd);/**   Updates a label   @return number of changes made   @param oldlabel label to update   @param up to date label for comparison   @param seq_number number of sequences   @param smo_changed tells, which labels have been changed */long scluster_update_label(long *oldlabel, long *seq_label, long seq_number, 			   long *smo_changed);/**   Prints out the likelihood values for the cluster.   @param outfile output file   @param cl cluster of models and sequences */void scluster_print_likelihood(FILE *outfile, scluster_t *cl);/**     Determines form an already calculated probability matrix, which model     fits best to a certain sequence.     @return index of best model if success, otherwize -1    @param cl cluster     @param seq_id ID of the sequence in question    @param all_log_p matrix containing the probability of each sequence    for each model    @param log_p the probability of the sequence in question for the     best fitting model*/int scluster_best_model(scluster_t *cl, long seq_id, double **all_log_p,			double *log_p);/**   Calculates the logarithmic probability of sequences for a model.   @param cs sequences and model  */void scluster_prob(smosqd_t *cs);/* int scluster_labels_from_kmeans(sequence_d_t *sqd, int smo_number); *//**   Creates random labels for a vector of sequences   @return 0 for success; -1 for error   @param sqd vector of sequences   @param smo_number number of models (needed to determine the interval   for the random numbers)*/int scluster_random_labels(sequence_d_t *sqd, int smo_number);/** Calculates the aposteriori prob. $\log(p(\lambda_best | O[seq\_id]))$,     where $\lambda_best$ is the model with highest apost. prob.    @return 0 for success; -1 for error    @param cl cluster    @param sqd the sequence in question    @param seq_id the ID of the sequence    @param lob_apo the results*/int  scluster_log_aposteriori(scluster_t *cl, sequence_d_t *sqd, int seq_id, 			      double *log_apo);/**   Prints the input vector for scluster_hmm */void scluster_print_header(FILE *file, char* argv[]);#ifdef __cplusplus}#endif/*@} */#endif /* SCLUSTER_H */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -