📄 chebdifft.m
字号:
function Dmf = chebdifft(f,M)% The function Dmf = chebdifft(f,M) computes the M'th% approximate Chebyshev derivatives of the data vector y.% A Fast Fourier Transform is used compute the Chebyshev cofficients% of the data vector. A recursion formula is used to compute the% Chebyshev coefficients for each derivative. A FFT is then used again% to compute the derivatives in physical space.% % Input:% f: Vector containing function values at the Chebyshev points% M: Derivative required (positive integer)%% Output:% ym: Vector containing approximate m'th derivative% % J.A.C. Weideman, S.C. Reddy 2000.f=f(:); % Make sure f is a vector N=length(f); a0=fft([f; flipud(f(2:N-1))]); % Extend and compute ffta0=a0(1:N).*[0.5; ones(N-2,1); 0.5]/(N-1); % a0 contains Chebyshev % coefficients of fa=[a0 zeros(N,M)]; % Recursion formulafor ell=1:M % for computing coefficients a(N-ell,ell+1)=2*(N-ell)*a(N-ell+1,ell); % of ell'th derivative for k=N-ell-2:-1:1 a(k+1,ell+1)=a(k+3,ell+1)+2*(k+1)*a(k+2,ell); end; a(1,ell+1)=a(2,ell)+a(3,ell+1)/2;end;back=[2*a(1,M+1); a(2:N-1,M+1); 2*a(N,M+1); flipud(a(2:N-1,M+1))];Dmf=0.5*fft(back); % Transform back toDmf=Dmf(1:N); % physical spaceif max(abs(imag(f))) == 0; Dmf = real(Dmf); end % Real data in, %real derivative out
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -