📄 chebint.m
字号:
function p = chebint(fk, x)% The function p = chebint(fk, x) computes the polynomial interpolant% of the data (xk, fk), where xk are the Chebyshev nodes. % Two or more data points are assumed.%% Input:% fk: Vector of y-coordinates of data, at Chebyshev points % x(k) = cos((k-1)*pi/(N-1)), k = 1...N.% x: Vector of x-values where polynomial interpolant is to be evaluated.%% Output:% p: Vector of interpolated values.%% The code implements the barycentric formula; see page 252 in% P. Henrici, Essentials of Numerical Analysis, Wiley, 1982.% (Note that if some fk > 1/eps, with eps the machine epsilon,% the value of eps in the code may have to be reduced.)% J.A.C. Weideman, S.C. Reddy 1998 fk = fk(:); x = x(:); % Make sure data are column vectors. N = length(fk); M = length(x); xk = sin(pi*[N-1:-2:1-N]'/(2*(N-1))); % Compute Chebyshev points. w = ones(N,1).*(-1).^[0:N-1]'; % w = weights for Chebyshev formulaw(1) = w(1)/2; w(N) = w(N)/2; D = x(:,ones(1,N)) - xk(:,ones(1,M))'; % Compute quantities x-x(k) D = 1./(D+eps*(D==0)); % and their reciprocals. p = D*(w.*fk)./(D*w); % Evaluate interpolant as % matrix-vector products.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -