⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 k9s1208.c

📁 arm s3c2410的nboot源码,用于启动2410
💻 C
字号:
#include <string.h>
#include "def.h"
#include "option.h"
#include "2410addr.h"
#include "2410lib.h"
#include "2410slib.h" 


#define BAD_CHECK	(0)
#define ECC_CHECK	(0)

//*************** H/W dependent functions ***************
void __RdPage528(U8 *pPage);
void __WrPage528(U8 *pPage);

static U16 NF_CheckId(void);
static int NF_EraseBlock(U32 blockNum);
static int NF_ReadPage(U32 block,U32 page,U8 *buffer);
static int NF_WritePage(U32 block,U32 page,U8 *buffer);
	//buffer size is 512 bytes
static int NF_IsBadBlock(U32 block);
static int NF_MarkBadBlock(U32 block);
static void NF_Reset(void);
static void NF_Init(void);
//*******************************************************

int DownloadData(void);

static void InputTargetBlock(void);

static U32 srcAddress;
static U32 targetBlock;	    // Block number (0 ~ 4095)
static U32 targetSize;	    // Total byte size 

U32 downloadAddress;
U32 downloadProgramSize=0x0;


void K9S1208_Program(void)
{
//    unsigned long interrupt_reservoir;
    int i;
    int programError=0;
    U8 *srcPt,*saveSrcPt;
    U32 blockIndex;

    downloadAddress=0x30100000;
    Uart_Printf("\n[SMC(K9S1208V0M) NAND Flash writing program]\n");
    //Uart_Printf("The program buffer: 0x30100000~0x31ffffff\n");

//tark
#if 0
    if(!DownloadData())
    {
	Uart_Printf("Download Fail\n");
	return;
    }
#endif

    NF_Init();


    rINTMSK = BIT_ALLMSK; 	
    targetSize=downloadProgramSize;
    if(targetSize==0)
    {
        srcAddress=0x30100000; 
        Uart_Printf("the data must be downloaded using ICE from %xh\n",srcAddress);			
    }
    else 
	srcAddress=downloadAddress+4; //to discard the data head for the size
 	    
    InputTargetBlock();

    Uart_Printf("source base address(0x3010000x)=0x%x\n",srcAddress);
    Uart_Printf("target start block number      =%d\n",targetBlock);
    Uart_Printf("target size        (0x4000*n)  =0x%x\n",targetSize);

    srcPt=(U8 *)srcAddress;
    blockIndex=targetBlock;
    while(1)
    {
        saveSrcPt=srcPt;	

#if BAD_CHECK       
	if(NF_IsBadBlock(blockIndex))	// 1:bad 0:good
        {
	    blockIndex++;   // for next block
	    continue;
	}
#endif
	if(!NF_EraseBlock(blockIndex))
	{
	    blockIndex++;   // for next block
	    continue;
	}
	    
	for(i=0;i<32;i++)
	{
	    if(!NF_WritePage(blockIndex,i,srcPt))// block num, page num, buffer
	    {
	        programError=1;
	        break;
	    }
#if ECC_CHECK    
	    if(!NF_ReadPage(blockIndex,i,srcPt))
	    {
		Uart_Printf("ECC Error(block=%d,page=%d!!!\n",blockIndex,i);
	    }
#endif	    
		srcPt+=512;	// Increase buffer addr one pase size
	    Uart_Printf(".");
	    if((U32)srcPt>=(srcAddress+targetSize)) // Check end of buffer
		break;	// Exit for loop
	}
        if(programError==1)
	{
	    blockIndex++;
	    srcPt=saveSrcPt;
	    programError=0;
	    continue;
	}
	if((U32)srcPt>=(srcAddress+targetSize))
	    break;	// Exit while loop
	blockIndex++;
    }
}

static void InputTargetBlock(void)
{
    Uart_Printf("\nSource size:0h~%xh\n",downloadProgramSize);
    Uart_Printf("\nAvailable target block number: 0~4095\n");
    Uart_Printf("Input target block number:");
    targetBlock=Uart_GetIntNum();	// Block number(0~4095)
    if(targetSize==0)
    {
    	Uart_Printf("Input target size(0x4000*n):");
    	targetSize=Uart_GetIntNum();	// Total byte size
    }
}


void K9S1208_PrintBadBlockNum(void)
{
    int i;
    U16 id;

    Uart_Printf("\n[SMC(K9S1208V0M) NAND Flash bad block check]\n");
    
    NF_Init();
    id=NF_CheckId();
    Uart_Printf("ID=%x(0xec76)\n",id);
    if(id!=0xec76)
	return;
    
    for(i=0;i<4096;i++)
    {
	NF_IsBadBlock(i);   // Print bad block
    }
}


void K9S1208_PrintBlock(void)// Printf one page
{
    int i,j;
    U16 id;
    U32 block,page;
    U8	buffer[512];

    Uart_Printf("\n[SMC(K9S1208V0M) NAND Flash block read]\n");	
    
    NF_Init();
    id=NF_CheckId();
    Uart_Printf("ID=%x(0xec76)\n",id);
    if(id!=0xec76)
	return;

    Uart_Printf("Input target block number:");
    block=Uart_GetIntNum();
    Uart_Printf("Input target page number:");   
    page=Uart_GetIntNum();

    NF_ReadPage(block,page,buffer);
    Uart_Printf("block=%d,page=%d:",block,page);
    for(j=0;j<512;j++)
    {
        if(j%16==0)
	    Uart_Printf("\n%3xh:",j);
        Uart_Printf("%02x ",buffer[j]);
    }
    Uart_Printf("\n");    	
}


//*************************************************
//*************************************************
//**           H/W dependent functions           **
//************************************************* 
//*************************************************

//The code is made for bi-endian mode

// block0: reserved for boot strap
// block1~4095: used for OS image
// badblock SE: xx xx xx xx xx 00 ....
// good block SE: ECC0 ECC1 ECC2 FF FF FF ....

#define WRITEVERIFY  (0)  //verifing is enable at writing.

/*
#define FC_CMD()    {rPDATA|=CLE;rPDATA&=~(ALE|CE);}
#define FC_ADDR()   {rPDATA|=ALE;rPDATA&=~(CLE|CE);}
#define FC_DATA()   {rPDATA&=~(ALE|CLE|CE);}
#define FC_INACTIVE() {rPDATA|=CE;rPDATA&=~(ALE|CLE);}
*/

#define NF_CMD(cmd)	{rNFCMD=cmd;}
#define NF_ADDR(addr)	{rNFADDR=addr;}	
#define NF_nFCE_L()	{rNFCONF&=~(1<<11);}
#define NF_nFCE_H()	{rNFCONF|=(1<<11);}
#define NF_RSTECC()	{rNFCONF|=(1<<12);}
#define NF_RDDATA() 	(rNFDATA)
#define NF_WRDATA(data) {rNFDATA=data;}

#define NF_WAITRB()    {while(!(rNFSTAT&(1<<0)));} 
	    //wait tWB and check F_RNB pin.   

#define ID_K9S1208V0M	0xec76

#if 1
// HCLK=100Mhz
#define TACLS		0  //1clk(0ns) 
#define TWRPH0		3  //3clk(25ns)
#define TWRPH1		0  //1clk(10ns)  //TACLS+TWRPH0+TWRPH1>=50ns
#else
// HCLK=50Mhz
#define TACLS		0  //1clk(0ns)
#define TWRPH0		1  //2clk(25ns)
#define TWRPH1		0  //1clk(10ns)
#endif


static U8 seBuf[16]={0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff};

// 1block=(512+16)bytes x 32pages
// 4096block

// A[23:14][13:9]
//  block   page

static int NF_EraseBlock(U32 block)
{
    U32 blockPage=(block<<5);
    int i;

#if BAD_CHECK
    if(NF_IsBadBlock(block))
	return 0;
#endif

    NF_nFCE_L();
    
    NF_CMD(0x60);   // Erase one block 1st command

    NF_ADDR(blockPage&0xff);	    // Page number=0
    NF_ADDR((blockPage>>8)&0xff);   
    NF_ADDR((blockPage>>16)&0xff);

    NF_CMD(0xd0);   // Erase one blcok 2nd command
    
   for(i=0;i<10;i++); //wait tWB(100ns)//??????

    NF_WAITRB();    // Wait tBERS max 3ms.
    NF_CMD(0x70);   // Read status command

    if (NF_RDDATA()&0x1) // Erase error
    {	
    	NF_nFCE_H();
	Uart_Printf("[ERASE_ERROR:block#=%d]\n",block);
	NF_MarkBadBlock(block);
	return 0;
    }
    else 
    {
    	NF_nFCE_H();
        return 1;
    }
}


static int NF_IsBadBlock(U32 block)
{
    int i;
    unsigned int blockPage;
    U8 data;
    
    
    blockPage=(block<<5);	// For 2'nd cycle I/O[7:5] 
    
    NF_nFCE_L();    
    NF_CMD(0x50);		// Spare array read command
    NF_ADDR(517&0xf);		// Read the mark of bad block in spare array(M addr=5) 
    NF_ADDR(blockPage&0xff);	// The mark of bad block is in 0 page
    NF_ADDR((blockPage>>8)&0xff);   // For block number A[24:17]
    NF_ADDR((blockPage>>16)&0xff);  // For block number A[25]

   for(i=0;i<10;i++);	// wait tWB(100ns) //?????
    
    NF_WAITRB();	// Wait tR(max 12us)
    
    data=NF_RDDATA();

    NF_nFCE_H();    

    if(data!=0xff)
    {
    	Uart_Printf("[block %d has been marked as a bad block(%x)]\n",block,data);
    	return 1;
    }
    else
    {
    	return 0;
    }
}


static int NF_MarkBadBlock(U32 block)
{
    int i;
    U32 blockPage=(block<<5);
 
    seBuf[0]=0xff;
    seBuf[1]=0xff;    
    seBuf[2]=0xff;    
    seBuf[5]=0x44;   // Bad blcok mark=0
    
    NF_nFCE_L(); 
    NF_CMD(0x50);   //????
    NF_CMD(0x80);   // Write 1st command
    
    NF_ADDR(0x0);		    // The mark of bad block is 
    NF_ADDR(blockPage&0xff);	    // marked 5th spare array 
    NF_ADDR((blockPage>>8)&0xff);   // in the 1st page.
    NF_ADDR((blockPage>>16)&0xff);  //
    
    for(i=0;i<16;i++)
    {
	NF_WRDATA(seBuf[i]);	// Write spare array
    }

    NF_CMD(0x10);   // Write 2nd command
    
    for(i=0;i<10;i++);  //tWB = 100ns. ///???????

    NF_WAITRB();      // Wait tPROG(200~500us)
  
    NF_CMD(0x70);
    
    for(i=0;i<3;i++);  //twhr=60ns////??????
    
    if (NF_RDDATA()&0x1) // Spare arrray write error
    {	
    	NF_nFCE_H();
    	Uart_Printf("[Program error is occurred but ignored]\n");
    }
    else 
    {
    	NF_nFCE_H();
    }

    Uart_Printf("[block #%d is marked as a bad block]\n",block);
    return 1;
}


static int NF_ReadPage(U32 block,U32 page,U8 *buffer)
{
    int i;
    unsigned int blockPage;
    U8 ecc0,ecc1,ecc2;
    U8 *bufPt=buffer;
    U8 se[16];	   
    
    page=page&0x1f;
    blockPage=(block<<5)+page;
    NF_RSTECC();    // Initialize ECC
    
    NF_nFCE_L();    
    NF_CMD(0x00);   // Read command
    NF_ADDR(0);	    // Column = 0
    NF_ADDR(blockPage&0xff);	    //
    NF_ADDR((blockPage>>8)&0xff);   // Block & Page num.
    NF_ADDR((blockPage>>16)&0xff);  //

    for(i=0;i<10;i++); //wait tWB(100ns)/////??????
    
    NF_WAITRB();    // Wait tR(max 12us)
    for(i=0;i<512;i++)
    {
    	*bufPt++=NF_RDDATA();	// Read one page
    }
    ecc0=rNFECC0;
    ecc1=rNFECC1;
    ecc2=rNFECC2;
    for(i=0;i<16;i++)
    {
    	se[i]=NF_RDDATA();	// Read spare array
    }
    
    //__RdPage528(pPage);
    NF_nFCE_H();    

    if(ecc0==se[0] && ecc1==se[1] && ecc2==se[2])
    {
	Uart_Printf("[ECC OK:%x,%x,%x]\n",se[0],se[1],se[2]);
    	return 1;
    }
    else
    {
	Uart_Printf("[ECC ERROR(RD):read:%x,%x,%x, reg:%x,%x,%x]\n",
		se[0],se[1],se[2],ecc0,ecc1,ecc2);
    	return 0;
    }    	
}


static int NF_WritePage(U32 block,U32 page,U8 *buffer)
{
    int i;
    U32 blockPage=(block<<5)+page;
    U8 *bufPt=buffer;

    NF_RSTECC();    // Initialize ECC
    
    NF_nFCE_L(); 
    NF_CMD(0x0);//??????
    NF_CMD(0x80);   // Write 1st command
    NF_ADDR(0);			    // Column 0
    NF_ADDR(blockPage&0xff);	    //
    NF_ADDR((blockPage>>8)&0xff);   // Block & page num.
    NF_ADDR((blockPage>>16)&0xff);  //

    for(i=0;i<512;i++)
    {
	NF_WRDATA(*bufPt++);	// Write one page to NFM from buffer
    }  
    
    seBuf[0]=rNFECC0;
    seBuf[1]=rNFECC1;
    seBuf[2]=rNFECC2;
    seBuf[5]=0xff;		// Marking good block
    
    for(i=0;i<16;i++)
    {
	NF_WRDATA(seBuf[i]);	// Write spare array(ECC and Mark)
    }  

    NF_CMD(0x10);   // Write 2nd command
    
    for(i=0;i<10;i++);  //tWB = 100ns. ////??????

    NF_WAITRB();    //wait tPROG 200~500us;
 
    NF_CMD(0x70);   // Read status command   
    
    for(i=0;i<3;i++);  //twhr=60ns
    
    if (NF_RDDATA()&0x1) // Page write error
    {	
    	NF_nFCE_H();
	Uart_Printf("[PROGRAM_ERROR:block#=%d]\n",block);
	NF_MarkBadBlock(block);
	return 0;
    }
    else 
    {
    	NF_nFCE_H();
    #if (WRITEVERIFY==1)
	//return NF_VerifyPage(block,page,pPage);	
    #else
	return 1;
    #endif
    }
}



static U16 NF_CheckId(void)
{
    int i;
    U16 id;
    
    NF_nFCE_L();
    
    NF_CMD(0x90);
    NF_ADDR(0x0);
    
    for(i=0;i<10;i++); //wait tWB(100ns)////?????
    
    id=NF_RDDATA()<<8;	// Maker code(K9S1208V:0xec)
    id|=NF_RDDATA();	// Devide code(K9S1208V:0x76)
    
    NF_nFCE_H();
    
    return id;
}


static void NF_Reset(void)
{
    int i;
    U16 id;
    
    
    NF_nFCE_L();

    NF_CMD(0xFF);	//reset command

    for(i=0;i<10;i++);  //tWB = 100ns. //??????

    NF_WAITRB();      //wait 200~500us;
     
    NF_nFCE_H();
}



static void NF_Init(void)
{
    rNFCONF=(1<<15)|(1<<14)|(1<<13)|(1<<12)|(1<<11)|(TACLS<<8)|(TWRPH0<<4)|(TWRPH1<<0);	
    // 1  1    1     1,   1      xxx,  r xxx,   r xxx        
    // En 512B 4step ECCR nFCE=H tACLS   tWRPH0   tWRPH1
    
    NF_Reset();
}

int DownloadData(void)
{
    int i,tmp;
    U16 checkSum=0,dnCS;
    U32 fileSize=10;
    U8 *downPt;

    Uart_Printf("Download through UART0 from 0x30100000.\n");

    downPt=(U8 *)downloadAddress;
  
    Uart_Printf("\ndownloadAddress=%x\n",downloadAddress);

    Uart_Printf("Download the plain binary file to be written\n");
    Uart_Printf("The file format: <n+6>(4)+(n)+CS(2)\n");
    Uart_Printf("Download methods: 115.2KBPS,8Bit,NP,1STOP\n");
 
    Uart_Printf("\nSTATUS:");

    rINTMSK=BIT_ALLMSK;
	
    tmp=RdURXH0(); //To remove overrun error state.

    i=0;    
    while(i<fileSize)
    {
	while(!(rUTRSTAT0&0x1));
	*(downPt+i)=RdURXH0();
	if(i==3)
	{
	    fileSize=*((U8 *)(downloadAddress+0))+
	    (*((U8 *)(downloadAddress+1))<<8)+
	    (*((U8 *)(downloadAddress+2))<<16)+
	    (*((U8 *)(downloadAddress+3))<<24);
	}
	
	if((i%1000)==0)WrUTXH0('#');
	i++;
    }

    downloadProgramSize=fileSize-6;

    for(i=4;i<(fileSize-2);i++)
    {
	checkSum+=*((U8 *)(i+downloadAddress));
    }

    dnCS=*((U8 *)(downloadAddress+fileSize-2))+
    	  (*( (U8 *)(downloadAddress+fileSize-1) )<<8);

    if(checkSum!=dnCS)
    {
    	Uart_Printf("Checksum Error!!! MEM:%x DN:%x\n",checkSum,dnCS);
	return 0;
    }

    Uart_Printf("\nDownload O.K.\n");
	
    return 1;
}


char Check10(int data, char seq) // Check '10' pattern
{
    if(data & (0x2<< seq*2) )
	return 1;
    else
	return 0;
}

int TestECC(void)
{
    int i;
    U32 colECC=0,lowECC=0;
    U32 col=0, low=0;

    rNFCONF=(1<<15)|(1<<12);

    for(i=0;i<512;i++)
	NF_WRDATA(0x0);	// Write one page
    
    seBuf[0]=rNFECC0;
    seBuf[1]=rNFECC1;
    seBuf[2]=rNFECC2;

    Uart_Printf("Old: ECC0=0x%x, ECC1=0x%x, ECC2=0x%x\n",seBuf[0],seBuf[1], seBuf[2]);

    rNFCONF=(1<<15)|(1<<12);

    for(i=0;i<200;i++)
	NF_WRDATA(0x0);	// Write 200 byte
    NF_WRDATA(0x20);	// Write one btte(col: 5th, line: 200th)
    for(i=0;i<311;i++)
	NF_WRDATA(0x0);	// Write 311 byte

    seBuf[3]=rNFECC0;
    seBuf[4]=rNFECC1;
    seBuf[5]=rNFECC2;

    Uart_Printf("New: ECC0=0x%x, ECC1=0x%x, ECC2=0x%x\n",seBuf[3],seBuf[4],seBuf[5]);

    seBuf[6]=seBuf[0]^seBuf[3];
    seBuf[7]=seBuf[1]^seBuf[4];
    seBuf[8]=seBuf[2]^seBuf[5];
    
    Uart_Printf("XOR: ECC0=0x%x, ECC1=0x%x, ECC2=0x%x\n",seBuf[6],seBuf[7],seBuf[8]);
/*
    for(i=4;i>0;i--)
    {
	if( seBuf[6]>>(i*2-2) == 0x0 | seBuf[6]>>(i*2-2) == 0x3 )
	{
	    Uart_Printf("The error is above 2bits-Can not recover!!!\n");
	    return 0;
	}
    }
*/
    colECC=seBuf[8]>>2;
    lowECC=((seBuf[8]&0x3)<<16)|(seBuf[7]<<8)|(seBuf[6]<<0);
    Uart_Printf("Low ECC=0x%x, Col ECC=0x%x\n", lowECC, colECC);

    // Column parity
    for(i=0;i<3;i++)
	col |= (Check10(colECC, i) <<i);

    Uart_Printf("col=%dth\n",col); 

    // Line parity
    for(i=0;i<9;i++)
	low |= (Check10(lowECC, i) <<i);
    Uart_Printf("low=%dth\n",low); 
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -