📄 qc-formats.c
字号:
cur_bay = bay; cur_rgb = rgb; columns = total_columns + 2; do { qc_imag_writergb(cur_rgb+0, bpp, cur_bay[1], cur_bay[0], cur_bay[bay_line]); qc_imag_writergb(cur_rgb+bpp, bpp, cur_bay[1], cur_bay[0], cur_bay[bay_line]); qc_imag_writergb(cur_rgb+rgb_line, bpp, cur_bay[1], cur_bay[bay_line+1], cur_bay[bay_line]); qc_imag_writergb(cur_rgb+rgb_line+bpp, bpp, cur_bay[1], cur_bay[bay_line+1], cur_bay[bay_line]); cur_bay += 2; cur_rgb += 2*bpp; } while (--columns); bay += bay_line2; rgb += rgb_line2; do { cur_bay = bay; cur_rgb = rgb; columns = total_columns; /* Process first 2x2 pixel block in a row here */ qc_imag_writergb(cur_rgb+0, bpp, cur_bay[1], cur_bay[0], cur_bay[bay_line]); qc_imag_writergb(cur_rgb+bpp, bpp, cur_bay[1], cur_bay[0], cur_bay[bay_line]); qc_imag_writergb(cur_rgb+rgb_line, bpp, cur_bay[1], cur_bay[bay_line+1], cur_bay[bay_line]); qc_imag_writergb(cur_rgb+rgb_line+bpp, bpp, cur_bay[1], cur_bay[bay_line+1], cur_bay[bay_line]); cur_bay += 2; cur_rgb += 2*bpp; do { w = 4*cur_bay[0] - (cur_bay[-bay_line-1] + cur_bay[-bay_line+1] + cur_bay[bay_line-1] + cur_bay[bay_line+1]); r = (2*(cur_bay[-1] + cur_bay[1]) + w) >> 2; b = (2*(cur_bay[-bay_line] + cur_bay[bay_line]) + w) >> 2; qc_imag_writergb(cur_rgb+0, bpp, CLIP(r,0,255), cur_bay[0], CLIP(b,0,255)); w = 4*cur_bay[1] - (cur_bay[-bay_line2+1] + cur_bay[-1] + cur_bay[3] + cur_bay[bay_line2+1]); g = (2*(cur_bay[-bay_line+1] + cur_bay[0] + cur_bay[2] + cur_bay[bay_line+1]) + w) >> 3; b = (2*(cur_bay[-bay_line] + cur_bay[-bay_line+2] + cur_bay[bay_line] + cur_bay[bay_line+2]) + w) >> 3; qc_imag_writergb(cur_rgb+bpp, bpp, cur_bay[1], CLIP(g,0,255), CLIP(b,0,255)); w = 4*cur_bay[bay_line] - (cur_bay[-bay_line] + cur_bay[bay_line-2] + cur_bay[bay_line+2] + cur_bay[bay_line3]); r = ((cur_bay[-1] + cur_bay[1] + cur_bay[bay_line2-1] + cur_bay[bay_line2+1]) + w) >> 2; g = ((cur_bay[0] + cur_bay[bay_line-1] + cur_bay[bay_line+1] + cur_bay[bay_line2]) + w) >> 2; qc_imag_writergb(cur_rgb+rgb_line, bpp, CLIP(r,0,255), CLIP(g,0,255), cur_bay[bay_line]); w = 4*cur_bay[bay_line+1] - (cur_bay[0] + cur_bay[2] + cur_bay[bay_line2] + cur_bay[bay_line2+2]); r = (2*(cur_bay[1] + cur_bay[bay_line2+1]) + w) >> 2; b = (2*(cur_bay[bay_line] + cur_bay[bay_line+2]) + w) >> 2; qc_imag_writergb(cur_rgb+rgb_line+bpp, bpp, CLIP(r,0,255), cur_bay[bay_line+1], CLIP(b,0,255)); cur_bay += 2; cur_rgb += 2*bpp; } while (--columns); /* Process last 2x2 pixel block in a row here */ qc_imag_writergb(cur_rgb+0, bpp, cur_bay[1], cur_bay[0], cur_bay[bay_line]); qc_imag_writergb(cur_rgb+bpp, bpp, cur_bay[1], cur_bay[0], cur_bay[bay_line]); qc_imag_writergb(cur_rgb+rgb_line, bpp, cur_bay[1], cur_bay[bay_line+1], cur_bay[bay_line]); qc_imag_writergb(cur_rgb+rgb_line+bpp, bpp, cur_bay[1], cur_bay[bay_line+1], cur_bay[bay_line]); bay += bay_line2; rgb += rgb_line2; } while (--rows); /* Process last two pixel rows here */ cur_bay = bay; cur_rgb = rgb; columns = total_columns + 2; do { qc_imag_writergb(cur_rgb+0, bpp, cur_bay[1], cur_bay[0], cur_bay[bay_line]); qc_imag_writergb(cur_rgb+bpp, bpp, cur_bay[1], cur_bay[0], cur_bay[bay_line]); qc_imag_writergb(cur_rgb+rgb_line, bpp, cur_bay[1], cur_bay[bay_line+1], cur_bay[bay_line]); qc_imag_writergb(cur_rgb+rgb_line+bpp, bpp, cur_bay[1], cur_bay[bay_line+1], cur_bay[bay_line]); cur_bay += 2; cur_rgb += 2*bpp; } while (--columns);}/* }}} *//* {{{ [fold] qc_imag_bay2rgb_gptm(unsigned char *bay, int bay_line, unsigned char *rgb, int rgb_line, int columns, int rows, int bpp, int sharpness) *//* Convert Bayer image to RGB image using Generalized Pei-Tam method (See: * "Effective Color Interpolation in CCD Color Filter Arrays Using Signal Correlation" * IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 6, June 2003. * Note that this is much improved version of the algorithm described in the paper) * bay = points to the bayer image data (upper left pixel is green) * bay_line = bytes between the beginnings of two consecutive rows * rgb = points to the rgb image data that is written * rgb_line = bytes between the beginnings of two consecutive rows * columns, rows = bayer image size (both must be even) * bpp = number of bytes in each pixel in the RGB image (should be 3 or 4) * sharpness = how sharp the image should be, between 0..65535 inclusive. * 23170 gives in theory image that corresponds to the original * best, but human eye likes slightly sharper picture... 32768 is a good bet. * When sharpness = 0, this routine is same as bilinear interpolation. *//* Execution time: 4344042 clock cycles for CIF image (Pentium II) */static inline void qc_imag_bay2rgb_gptm(unsigned char *bay, int bay_line, unsigned char *rgb, int rgb_line, int columns, int rows, int bpp, unsigned int sharpness){ /* 0.8 fixed point weights, should be between 0-256. Larger value = sharper, zero corresponds to bilinear interpolation. */ /* Best PSNR with sharpness = 23170 */ static const int wrg0 = 144; /* Weight for Red on Green */ static const int wbg0 = 160; static const int wgr0 = 120; static const int wbr0 = 192; static const int wgb0 = 120; static const int wrb0 = 168; int wrg; int wbg; int wgr; int wbr; int wgb; int wrb; unsigned int wu; int r,g,b,w; unsigned char *cur_bay, *cur_rgb; int bay_line2, bay_line3, rgb_line2; int total_columns; /* Compute weights */ wu = (sharpness * sharpness) >> 16; wu = (wu * wu) >> 16; wrg = (wrg0 * wu) >> 10; wbg = (wbg0 * wu) >> 10; wgr = (wgr0 * wu) >> 10; wbr = (wbr0 * wu) >> 10; wgb = (wgb0 * wu) >> 10; wrb = (wrb0 * wu) >> 10; /* Process 2 lines and rows per each iteration, but process the first and last two columns and rows separately */ total_columns = (columns>>1) - 2; rows = (rows>>1) - 2; bay_line2 = 2*bay_line; bay_line3 = 3*bay_line; rgb_line2 = 2*rgb_line; /* Process first two pixel rows here */ cur_bay = bay; cur_rgb = rgb; columns = total_columns + 2; do { qc_imag_writergb(cur_rgb+0, bpp, cur_bay[1], cur_bay[0], cur_bay[bay_line]); qc_imag_writergb(cur_rgb+bpp, bpp, cur_bay[1], cur_bay[0], cur_bay[bay_line]); qc_imag_writergb(cur_rgb+rgb_line, bpp, cur_bay[1], cur_bay[bay_line+1], cur_bay[bay_line]); qc_imag_writergb(cur_rgb+rgb_line+bpp, bpp, cur_bay[1], cur_bay[bay_line+1], cur_bay[bay_line]); cur_bay += 2; cur_rgb += 2*bpp; } while (--columns); bay += bay_line2; rgb += rgb_line2; do { cur_bay = bay; cur_rgb = rgb; columns = total_columns; /* Process first 2x2 pixel block in a row here */ qc_imag_writergb(cur_rgb+0, bpp, cur_bay[1], cur_bay[0], cur_bay[bay_line]); qc_imag_writergb(cur_rgb+bpp, bpp, cur_bay[1], cur_bay[0], cur_bay[bay_line]); qc_imag_writergb(cur_rgb+rgb_line, bpp, cur_bay[1], cur_bay[bay_line+1], cur_bay[bay_line]); qc_imag_writergb(cur_rgb+rgb_line+bpp, bpp, cur_bay[1], cur_bay[bay_line+1], cur_bay[bay_line]); cur_bay += 2; cur_rgb += 2*bpp; do { w = 4*cur_bay[0] - (cur_bay[-bay_line-1] + cur_bay[-bay_line+1] + cur_bay[bay_line-1] + cur_bay[bay_line+1]); r = (512*(cur_bay[-1] + cur_bay[1]) + w*wrg) >> 10; b = (512*(cur_bay[-bay_line] + cur_bay[bay_line]) + w*wbg) >> 10; qc_imag_writergb(cur_rgb+0, bpp, CLIP(r,0,255), cur_bay[0], CLIP(b,0,255)); w = 4*cur_bay[1] - (cur_bay[-bay_line2+1] + cur_bay[-1] + cur_bay[3] + cur_bay[bay_line2+1]); g = (256*(cur_bay[-bay_line+1] + cur_bay[0] + cur_bay[2] + cur_bay[bay_line+1]) + w*wgr) >> 10; b = (256*(cur_bay[-bay_line] + cur_bay[-bay_line+2] + cur_bay[bay_line] + cur_bay[bay_line+2]) + w*wbr) >> 10; qc_imag_writergb(cur_rgb+bpp, bpp, cur_bay[1], CLIP(g,0,255), CLIP(b,0,255)); w = 4*cur_bay[bay_line] - (cur_bay[-bay_line] + cur_bay[bay_line-2] + cur_bay[bay_line+2] + cur_bay[bay_line3]); r = (256*(cur_bay[-1] + cur_bay[1] + cur_bay[bay_line2-1] + cur_bay[bay_line2+1]) + w*wrb) >> 10; g = (256*(cur_bay[0] + cur_bay[bay_line-1] + cur_bay[bay_line+1] + cur_bay[bay_line2]) + w*wgb) >> 10; qc_imag_writergb(cur_rgb+rgb_line, bpp, CLIP(r,0,255), CLIP(g,0,255), cur_bay[bay_line]); w = 4*cur_bay[bay_line+1] - (cur_bay[0] + cur_bay[2] + cur_bay[bay_line2] + cur_bay[bay_line2+2]); r = (512*(cur_bay[1] + cur_bay[bay_line2+1]) + w*wrg) >> 10; b = (512*(cur_bay[bay_line] + cur_bay[bay_line+2]) + w*wbg) >> 10; qc_imag_writergb(cur_rgb+rgb_line+bpp, bpp, CLIP(r,0,255), cur_bay[bay_line+1], CLIP(b,0,255)); cur_bay += 2; cur_rgb += 2*bpp; } while (--columns); /* Process last 2x2 pixel block in a row here */ qc_imag_writergb(cur_rgb+0, bpp, cur_bay[1], cur_bay[0], cur_bay[bay_line]); qc_imag_writergb(cur_rgb+bpp, bpp, cur_bay[1], cur_bay[0], cur_bay[bay_line]); qc_imag_writergb(cur_rgb+rgb_line, bpp, cur_bay[1], cur_bay[bay_line+1], cur_bay[bay_line]); qc_imag_writergb(cur_rgb+rgb_line+bpp, bpp, cur_bay[1], cur_bay[bay_line+1], cur_bay[bay_line]); bay += bay_line2; rgb += rgb_line2; } while (--rows); /* Process last two pixel rows here */ cur_bay = bay; cur_rgb = rgb; columns = total_columns + 2; do { qc_imag_writergb(cur_rgb+0, bpp, cur_bay[1], cur_bay[0], cur_bay[bay_line]); qc_imag_writergb(cur_rgb+bpp, bpp, cur_bay[1], cur_bay[0], cur_bay[bay_line]); qc_imag_writergb(cur_rgb+rgb_line, bpp, cur_bay[1], cur_bay[bay_line+1], cur_bay[bay_line]); qc_imag_writergb(cur_rgb+rgb_line+bpp, bpp, cur_bay[1], cur_bay[bay_line+1], cur_bay[bay_line]); cur_bay += 2; cur_rgb += 2*bpp; } while (--columns);}/* }}} *//* {{{ [fold] qc_imag_rgbbgr(unsigned char *dst, int pixels, int bpp) *//* Convert RGB image to BGR or vice versa with the given number of pixels and * bytes per pixel */static void inline qc_imag_rgbbgr(unsigned char *dst, int pixels, int bpp){ unsigned char r,b; do { r = dst[0]; b = dst[2]; dst[0] = b; dst[2] = r; dst += bpp; } while (--pixels);}/* }}} *//* }}} *//* {{{ [fold] **** qc_fmt: Start of generic format query functions ********************** *//* {{{ [fold] struct qc_fmt_format: a format definition */struct qc_fmt_format { u32 fcc; /* M$ defined fourcc code, see http://www.fourcc.org */ signed char bpp; /* 0=variable, -1=unknown (FIXME:what bpps do AVIs use here?) */ char order; /* 'R' = RGB, 'B'=BGR, 0=not specified */ unsigned char nr, ng, nb; /* Number of red, green, blue levels (0=256 levels) */ char *name; /* Human-readable name */ Bool supported; /* Can be converted to? */ /* Here we could add a pointer to list containing conversion routines to other fourcc's */ /* Then write code to create minimum spanning tree of format conversions */ /* Include estimated cost per pixel to apply a conversion routine to weight edges */};/* }}} *//* {{{ [fold] List of supported formats */#define BF_RGB(r,g,b) 'R', (b)&0xFF, (g)&0xFF, (r)&0xFF#define BF_BGR(r,g,b) 'B', (b)&0xFF, (g)&0xFF, (r)&0xFF#define NO_BF 0, 0, 0, 0#define FORMAT(ID,FCC1,FCC2,FCC3,FCC4,BPP,BF,NAME,SUPP) \static const struct qc_fmt_format qc_fmt_formats_##ID = { v4l2_fourcc(FCC1,FCC2,FCC3,FCC4), BPP, BF, NAME, SUPP }FORMAT(Y800, 'Y','8','0','0', 8, NO_BF, "GREY", TRUE);FORMAT(RGB_HI, 'q','c','R','B', 8, BF_RGB(6, 6, 6), "HI240", FALSE); /* Not sure: BF_RGB or BF_BGR? Same as BT20? Don't think so */FORMAT(RGB_332, 3,0,0,0, 8, BF_RGB(8, 8, 4), "RGB332", FALSE);/* Little endian RGB formats (least significant byte at lowest address) */FORMAT(RGB_555L, 3,0,0,0, 16, BF_RGB(32, 32, 32), "RGB555L",TRUE); /* Should this be 15 or 16 bpp? Is this same as RGB2? */FORMAT(RGB_565L, 3,0,0,0, 16, BF_RGB(32, 64, 32), "RGB565L",TRUE); /* Is this same as RGB2? */FORMAT(RGB_24L, 'R','G','B','2', 24, BF_RGB(256, 256, 256), "RGB24L", TRUE);FORMAT(BGR_24L, 'R','G','B','2', 24, BF_BGR(256, 256, 256), "BGR24L", TRUE);FORMAT(RGB_32L, 'R','G','B','2', 32, BF_RGB(256, 256, 256), "RGB32L", TRUE);FORMAT(BGR_32L, 'R','G','B','2', 32, BF_BGR(256, 256, 256), "BGR32L", TRUE);/* Big endian RGB formats (most significant byte at lowest address) */FORMAT(RGB_555B, 'q','c','R','B', 16, BF_RGB(32, 32, 32), "RGB555B",FALSE);FORMAT(RGB_565B, 'q','c','R','B', 16, BF_RGB(32, 64, 32), "RGB565B",FALSE);/* Component YUV formats */FORMAT(YUY2, 'Y','U','Y','2', 16, NO_BF, "YUV422", TRUE); /* 4:2:2 packed pixel YUYV */FORMAT(UYVY, 'U','Y','V','Y', 16, NO_BF, "UYVY", FALSE);FORMAT(IYUV, 'I','Y','U','V', 12, NO_BF, "YUV420", FALSE);/* Planar YUV formats */FORMAT(YV12, 'Y','V','1','2', 12, NO_BF, "YV12", FALSE);FORMAT(YVU9, 'Y','V','U','9', 9, NO_BF, "YVU9", FALSE);FORMAT(Y41P, 'Y','4','1','P', 12, NO_BF, "Y41P", FALSE); /* 4:1:1 packed pixel UYVY UYVY YYYY */FORMAT(qcY1, 'q','c','Y','1', 12, NO_BF, "YUV411P", FALSE); /* Like Y41P but planar and Y, U and V planes are in this order */FORMAT(qcY2, 'q','c','Y','2', 16, NO_BF, "YUV422P", TRUE); /* Like YUY2 but planar */FORMAT(qcV1, 'q','c','V','1', 12, NO_BF, "YVU411P", FALSE); /* Like qcY1 but V and U planes are in this order */FORMAT(qcV2, 'q','c','V','2', 16, NO_BF, "YVU422P", FALSE); /* Like qcY2 but V and U planes are in this order */FORMAT(qcU9, 'q','c','U','9', 9, NO_BF, "YUV410P", TRUE); /* Like YVU9 but U and V planes are in this order */FORMAT(qcYY, 'q','c','Y','Y', 12, NO_BF, "YYUV", FALSE); /* Packed 4:2:2 sampling, Y, Y, U, V */FORMAT(NV12, 'N','V','1','2', 12, NO_BF, "NV12", FALSE);FORMAT(NV21, 'N','V','2','1', 12, NO_BF, "NV21", FALSE);/* Special formats */FORMAT(qcBT, 'q','c','B','T', -1, NO_BF, "BT848 RAW", FALSE); /* RAW is raw scanline data sampled (before PAL decoding) */FORMAT(qcBR, 'q','c','B','R', 8, NO_BF, "BAYER", TRUE); /* Same as STVA? */FORMAT(qcMJ, 'q','c','M','J', 0, NO_BF, "MJPEG", TRUE); /* Same as MJPG? */FORMAT(qcWN, 'q','c','W','N', -1, NO_BF, "Winnov hw", FALSE); /* Same as WNV1 (or CHAM, WINX, YUV8)? *//* }}} *//* {{{ [fold] struct qc_fmt_alias: Alias fourcc codes for above formats */static struct qc_fmt_alias { u32 fcc; struct qc_fmt_format const *format;} const qc_fmt_aliases[] = { { v4l2_fourcc(0,0,0,0), &qc_fmt_formats_RGB_24L }, /* Could be any format with fourcc 'RGB2' */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -