⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 logist2.m

📁 Kalman滤波开发包(matlab版)包括很多编得很好得函数
💻 M
字号:
function [beta,p,lli] = logist2(y,x,w)% [beta,p,lli] = logist2(y,x) %% 2-class logistic regression.  %% INPUT% 	y 	Nx1 colum vector of 0|1 class assignments% 	x 	NxK matrix of input vectors as rows% 	[w]	Nx1 vector of sample weights %% OUTPUT% 	beta 	Kx1 column vector of model coefficients% 	p 	Nx1 column vector of fitted class 1 posteriors% 	lli 	log likelihood%% Class 1 posterior is 1 / (1 + exp(-x*beta))%% David Martin <dmartin@eecs.berkeley.edu> % April 16, 2002% Copyright (C) 2002 David R. Martin <dmartin@eecs.berkeley.edu>%% This program is free software; you can redistribute it and/or% modify it under the terms of the GNU General Public License as% published by the Free Software Foundation; either version 2 of the% License, or (at your option) any later version.% % This program is distributed in the hope that it will be useful, but% WITHOUT ANY WARRANTY; without even the implied warranty of% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU% General Public License for more details.% % You should have received a copy of the GNU General Public License% along with this program; if not, write to the Free Software% Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA% 02111-1307, USA, or see http://www.gnu.org/copyleft/gpl.html.error(nargchk(2,3,nargin));% check inputsif size(y,2) ~= 1,  error('Input y not a column vector.');endif size(y,1) ~= size(x,1),   error('Input x,y sizes mismatched.'); end% get sizes[N,k] = size(x);% if sample weights weren't specified, set them to 1if nargin < 3,   w = 1;end% normalize sample weights so max is 1w = w / max(w);% initial guess for beta: all zerosbeta = zeros(k,1);% Newton-Raphson via IRLS,% taken from Hastie/Tibshirani/Friedman Section 4.4.iter = 0;lli = 0;while 1==1,  iter = iter + 1;    % fitted probabilities  p = 1 ./ (1 + exp(-x*beta));	    % log likelihood  lli_prev = lli;  lli = sum( w .* (y.*log(p+eps) + (1-y).*log(1-p+eps)) );  % least-squares weights  wt = w .* p .* (1-p);		  % derivatives of likelihood w.r.t. beta  deriv = x'*(w.*(y-p));  % Hessian of likelihood w.r.t. beta  % hessian = x'Wx, where W=diag(w)  % Do it this way to be memory efficient and fast.  hess = zeros(k,k);  for i = 1:k,    wxi = wt .* x(:,i);    for j = i:k,      hij = wxi' * x(:,j);      hess(i,j) = -hij;      hess(j,i) = -hij;    end  end  % make sure Hessian is well conditioned  if (rcond(hess) < eps),     error(['Stopped at iteration ' num2str(iter) ...           ' because Hessian is poorly conditioned.']);    break;   end;  % Newton-Raphson update step  step = hess\deriv;  beta = beta - step;  % termination criterion based on derivatives  tol = 1e-6;  if abs(deriv'*step/k) < tol, break; end;  % termination criterion based on log likelihood%   tol = 1e-4;%   if abs((lli-lli_prev)/(lli+lli_prev)) < 0.5*tol, break; end;end;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -