⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gmath.cpp

📁 一个非常有用的开源代码
💻 CPP
字号:
/*	Copyright (C) 2006, Mike Gashler	This library is free software; you can redistribute it and/or	modify it under the terms of the GNU Lesser General Public	License as published by the Free Software Foundation; either	version 2.1 of the License, or (at your option) any later version.	see http://www.gnu.org/copyleft/lesser.html*/#include "GMath.h"#include "string.h"#include <stdlib.h>#include "GMacros.h"/*static*/ double GMath::gamma(double x){    int i, k, m;    double ga, gr, z;    double r = 0;    static double g[] =	{        1.0,        0.5772156649015329,       -0.6558780715202538,       -0.420026350340952e-1,        0.1665386113822915,       -0.421977345555443e-1,       -0.9621971527877e-2,        0.7218943246663e-2,       -0.11651675918591e-2,       -0.2152416741149e-3,        0.1280502823882e-3,       -0.201348547807e-4,       -0.12504934821e-5,        0.1133027232e-5,       -0.2056338417e-6,        0.6116095e-8,        0.50020075e-8,       -0.11812746e-8,        0.1043427e-9,        0.77823e-11,       -0.36968e-11,        0.51e-12,       -0.206e-13,       -0.54e-14,        0.14e-14	};    if(x > 171.0)		return 1e308; // This value is an overflow flag.    if(x == (int)x)	{        if(x > 0.0)		{            ga = 1.0;               // use factorial            for (i = 2; i < x; i++)			{				ga *= i;            }         }         else            ga = 1e308;     }     else 	 {        if(fabs(x) > 1.0) 		{            z = fabs(x);            m = (int)z;            r = 1.0;            for (k = 1; k <= m; k++)                r *= (z - k);            z -= m;        }        else            z = x;        gr = g[24];        for (k = 23; k >= 0; k--)            gr = gr * z + g[k];        ga = 1.0 / (gr*z);        if(fabs(x) > 1.0)		{            ga *= r;            if (x < 0.0)                ga = -3.14159265358979323846 / (x * ga * sin(3.14159265358979323846 * x));        }    }    return ga;}// This implements Newton's method for determining a// polynomial f(t) that goes through all the control points// pFuncValues at pTValues.  (You could then convert to a// Bezier curve to get a Bezier curve that goes through those// points.)  The polynomial coefficients are put in pFuncValues// in the form c0 + c1*t + c2*t*t + c3*t*t*t + .../*static*/ void GMath::NewtonPolynomial(const double* pTValues, double* pFuncValues, int nPoints){	// Calculate the coefficients to Newton's blending functions	double* pNC = (double*)alloca(nPoints * sizeof(double));	memcpy(pNC, pFuncValues, nPoints * sizeof(double));	int n, i;	for(n = 1; n < nPoints; n++)	{		for(i = nPoints - n - 1; i >= 0; i--)		{			pNC[n + i] -= pNC[n + i - 1];			pNC[n + i] /= (pTValues[n + i] - pTValues[i]);		}	}	// Accumulate into polynomial coefficients	double* pBlending = (double*)alloca(nPoints * sizeof(double));	for(n = 1; n < nPoints; n++)	{		pBlending[n] = 0;		pFuncValues[n] = 0;	}	pBlending[0] = 1;	pFuncValues[0] = pNC[0];	for(n = 1; n < nPoints; n++)	{		for(i = n; i > 0; i--)			pBlending[i] -= pTValues[n - 1] * pBlending[i - 1];		for(i = 0; i <= n; i++)			pFuncValues[n - i] += pNC[n] * pBlending[i];	}}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -