⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sha2.cpp

📁 一个非常有用的开源代码
💻 CPP
📖 第 1 页 / 共 2 页
字号:
 /*   -------------------------------------------------------------------------   Copyright (c) 2001, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.   All rights reserved.      TERMS   Redistribution and use in source and binary forms, with or without    modification, are permitted subject to the following conditions:   1. Redistributions of source code must retain the above copyright       notice, this list of conditions and the following disclaimer.    2. Redistributions in binary form must reproduce the above copyright      notice, this list of conditions and the following disclaimer in the       documentation and/or other materials provided with the distribution.    3. The copyright holder's name must not be used to endorse or promote       any products derived from this software without his specific prior       written permission.    This software is provided 'as is' with no express or implied warranties    of correctness or fitness for purpose.   -------------------------------------------------------------------------   This is a byte oriented version of SHA256 that operates on arrays of bytes   stored in memory. The operation uses a type 'sha256_ctx' to hold details of   the current hash state and uses the following three calls:   void sha256_begin(sha256_ctx ctx[])   void sha256_hash(const unsigned char data[], unsigned long len, sha256_ctx ctx[])   void sha256_end(unsigned char hval[], sha256_ctx ctx[])   The first subroutine initialises a hash computation by setting up the    context in the sha256_ctx context.   The second subroutine hashes 8-bit bytes from array data[] into the hash    state withinh sha256_ctx context, the number of bytes to be hashed being    given by the the unsigned long integer len.   The third subroutine completes the hash calculation and places the   resulting digest value in the array of 8-bit bytes hval[]   This implementation of SHA256 also supports SHA384 and SHA512 but these   hash functions depend on the use of 64-bit long integers and are not very    efficient on 32-bit machines. This code is NOT recommended for these hash   functions.   My thanks to Erik Andersen <andersen@codepoet-consulting.com> for testing    this code on big-endian systems and for his assistance with corrections *//* define the hash functions that you need  */#define SHA_2#define SHA_256#define SHA_384#define SHA_512#include <string.h>     /* for memcpy() etc.        */#include <stdlib.h>     /* for _lrotr with VC++     *//*  1. PLATFORM SPECIFIC INCLUDES */#if defined(__GNU_LIBRARY__)#  include <endian.h>#  include <byteswap.h>#elif defined(__CRYPTLIB__)#  if defined( INC_ALL )#    include "crypt.h"#  elif defined( INC_CHILD )#    include "../crypt.h"#  else#    include "crypt.h"#  endif#  if defined(DATA_LITTLEENDIAN)#    define PLATFORM_BYTE_ORDER SHA_LITTLE_ENDIAN#  else#    define PLATFORM_BYTE_ORDER SHA_BIG_ENDIAN#  endif#elif defined(_MSC_VER)#  include <stdlib.h>#elif !defined(WIN32)#  include <stdlib.h>#  if !defined (_ENDIAN_H)#    include <sys/param.h>#  else#    include _ENDIAN_H#  endif#endif/*  2. BYTE ORDER IN 32-BIT WORDS    To obtain the highest speed on processors with 32-bit words, this code     needs to determine the order in which bytes are packed into such words.    The following block of code is an attempt to capture the most obvious     ways in which various environemnts specify their endian definitions. 	It may well fail, in which case the definitions will need to be set by     editing at the points marked **** EDIT HERE IF NECESSARY **** below.*/#define SHA_LITTLE_ENDIAN   1234 /* byte 0 is least significant (i386) */#define SHA_BIG_ENDIAN      4321 /* byte 0 is most significant (mc68k) */#if !defined(PLATFORM_BYTE_ORDER)#if defined(LITTLE_ENDIAN) || defined(BIG_ENDIAN)#  if defined(LITTLE_ENDIAN) && defined(BIG_ENDIAN)#    if defined(BYTE_ORDER)#      if   (BYTE_ORDER == LITTLE_ENDIAN)#        define PLATFORM_BYTE_ORDER SHA_LITTLE_ENDIAN#      elif (BYTE_ORDER == BIG_ENDIAN)#        define PLATFORM_BYTE_ORDER SHA_BIG_ENDIAN#      endif#    endif#  elif defined(LITTLE_ENDIAN) && !defined(BIG_ENDIAN) #    define PLATFORM_BYTE_ORDER SHA_LITTLE_ENDIAN#  elif !defined(LITTLE_ENDIAN) && defined(BIG_ENDIAN)#    define PLATFORM_BYTE_ORDER SHA_BIG_ENDIAN#  endif#elif defined(_LITTLE_ENDIAN) || defined(_BIG_ENDIAN)#  if defined(_LITTLE_ENDIAN) && defined(_BIG_ENDIAN)#    if defined(_BYTE_ORDER)#      if   (_BYTE_ORDER == _LITTLE_ENDIAN)#        define PLATFORM_BYTE_ORDER SHA_LITTLE_ENDIAN#      elif (_BYTE_ORDER == _BIG_ENDIAN)#        define PLATFORM_BYTE_ORDER SHA_BIG_ENDIAN#      endif#    endif#  elif defined(_LITTLE_ENDIAN) && !defined(_BIG_ENDIAN) #    define PLATFORM_BYTE_ORDER SHA_LITTLE_ENDIAN#  elif !defined(_LITTLE_ENDIAN) && defined(_BIG_ENDIAN)#    define PLATFORM_BYTE_ORDER SHA_BIG_ENDIAN#  endif#elif 0     /* **** EDIT HERE IF NECESSARY **** */#define PLATFORM_BYTE_ORDER SHA_LITTLE_ENDIAN#elif 0     /* **** EDIT HERE IF NECESSARY **** */#define PLATFORM_BYTE_ORDER SHA_BIG_ENDIAN#elif (('1234' >> 24) == '1')#  define PLATFORM_BYTE_ORDER SHA_LITTLE_ENDIAN#elif (('4321' >> 24) == '1')#  define PLATFORM_BYTE_ORDER SHA_BIG_ENDIAN#endif#endif#if !defined(PLATFORM_BYTE_ORDER)#  error Please set undetermined byte order (lines 134 or 136 of sha2.c).#endif/* this Microsft VC++ intrinsic rotate makes a big difference to the speed of this code */#if defined(_MSC_VER)#define rotr32(x,n)   _lrotr(x,n)#else#define rotr32(x,n)   (((x) >> n) | ((x) << (32 - n)))#endif#define rotr64(x,n)   (((x) >> n) | ((x) << (64 - n)))/* reverse byte order in 32-bit words   */#if !defined(bswap_32)#define bswap_32(x) (rotr32((x), 24) & 0x00ff00ff | rotr32((x), 8) & 0xff00ff00)#endif#if !defined(bswap_64)#define bswap_64(x) (((uint64_t)(bswap_32((uint32_t)(x)))) << 32 | bswap_32((uint32_t)((x) >> 32)))#endif#include "sha2.h"/*  Defining FAST_COPY will generally improve speed but it assumes that     arrays of 32-bit words can be addressed as arrays of bytes by     casting the array base address. Defining WORD_COPY avoids this problem     by assembling bytes into a word variable before copying to memory. If    neither is defined a slow but safe byte oriented version is used.*/#if 1#define FAST_COPY#elif 0#define WORD_COPY#endif#if defined(FAST_COPY) && (PLATFORM_BYTE_ORDER == SHA_LITTLE_ENDIAN)#define SWAP_BYTES#else#undef  SWAP_BYTES#endif#if defined(SHA_2) || defined(SHA_256)/* SHA256 mixing function definitions   */#define ch(x,y,z)   (((x) & (y)) ^ (~(x) & (z)))#define maj(x,y,z)  (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))#define s256_0(x) (rotr32((x),  2) ^ rotr32((x), 13) ^ rotr32((x), 22)) #define s256_1(x) (rotr32((x),  6) ^ rotr32((x), 11) ^ rotr32((x), 25)) #define g256_0(x) (rotr32((x),  7) ^ rotr32((x), 18) ^ ((x) >>  3)) #define g256_1(x) (rotr32((x), 17) ^ rotr32((x), 19) ^ ((x) >> 10)) /* rotated SHA256 round definition. Rather than swapping variables as in    *//* FIPS-180, different variables are 'rotated' on each round, returning     *//* to their starting positions every eight rounds                           */#define h2(i) ctx->wdat[i & 15] += \    g256_1(ctx->wdat[(i + 14) & 15]) + ctx->wdat[(i + 9) & 15] + g256_0(ctx->wdat[(i + 1) & 15])#define h2_cycle(i,j)  \    v[(7 - i) & 7] += (j ? h2(i) : ctx->wdat[i & 15]) + k256[i + j] \        + s256_1(v[(4 - i) & 7]) + ch(v[(4 - i) & 7], v[(5 - i) & 7], v[(6 - i) & 7]); \    v[(3 - i) & 7] += v[(7 - i) & 7]; \    v[(7 - i) & 7] += s256_0(v[(0 - i) & 7]) + maj(v[(0 - i) & 7], v[(1 - i) & 7], v[(2 - i) & 7])/* SHA256 mixing data   */const uint32_t k256[64] ={   x_32(428a2f98), x_32(71374491), x_32(b5c0fbcf), x_32(e9b5dba5),     x_32(3956c25b), x_32(59f111f1), x_32(923f82a4), x_32(ab1c5ed5),     x_32(d807aa98), x_32(12835b01), x_32(243185be), x_32(550c7dc3),     x_32(72be5d74), x_32(80deb1fe), x_32(9bdc06a7), x_32(c19bf174),     x_32(e49b69c1), x_32(efbe4786), x_32(0fc19dc6), x_32(240ca1cc),     x_32(2de92c6f), x_32(4a7484aa), x_32(5cb0a9dc), x_32(76f988da),     x_32(983e5152), x_32(a831c66d), x_32(b00327c8), x_32(bf597fc7),     x_32(c6e00bf3), x_32(d5a79147), x_32(06ca6351), x_32(14292967),     x_32(27b70a85), x_32(2e1b2138), x_32(4d2c6dfc), x_32(53380d13),     x_32(650a7354), x_32(766a0abb), x_32(81c2c92e), x_32(92722c85),    x_32(a2bfe8a1), x_32(a81a664b), x_32(c24b8b70), x_32(c76c51a3),     x_32(d192e819), x_32(d6990624), x_32(f40e3585), x_32(106aa070),     x_32(19a4c116), x_32(1e376c08), x_32(2748774c), x_32(34b0bcb5),     x_32(391c0cb3), x_32(4ed8aa4a), x_32(5b9cca4f), x_32(682e6ff3),     x_32(748f82ee), x_32(78a5636f), x_32(84c87814), x_32(8cc70208),     x_32(90befffa), x_32(a4506ceb), x_32(bef9a3f7), x_32(c67178f2),};/* Compile 64 bytes of hash data into SHA256 digest value  */static void sha256_compile(sha256_ctx ctx[1]){   uint32_t    v[8], j;    memcpy(v, ctx->hash, 32);    for(j = 0; j < 64; j += 16)    {        h2_cycle( 0, j); h2_cycle( 1, j); h2_cycle( 2, j); h2_cycle( 3, j);        h2_cycle( 4, j); h2_cycle( 5, j); h2_cycle( 6, j); h2_cycle( 7, j);        h2_cycle( 8, j); h2_cycle( 9, j); h2_cycle(10, j); h2_cycle(11, j);        h2_cycle(12, j); h2_cycle(13, j); h2_cycle(14, j); h2_cycle(15, j);    }    ctx->hash[0] += v[0]; ctx->hash[1] += v[1]; ctx->hash[2] += v[2]; ctx->hash[3] += v[3];    ctx->hash[4] += v[4]; ctx->hash[5] += v[5]; ctx->hash[6] += v[6]; ctx->hash[7] += v[7];}/* SHA256 hash data in an array of bytes into hash buffer and call the      *//* hash_compile function as required.                                       *//* If FAST_COPY is defined the data to be hashed is processed as an array   *//* bytes and compiled into the buffer ctx->wdat[] of 32-bit words in the    *//* native byte order.  On little endian machines a 32-bit word byte swap    *//* is then performed before this data is compiled into the hash. But when   *//* FAST_COPY is not defined the bytes are compiled into the buffer in the   *//* big-endian format directly so no later byte order changes are needed.    */#if defined(FAST_COPY)void sha256_hash(const unsigned char data[], const unsigned long len, sha256_ctx ctx[1]){   uint32_t            free = 64 - (uint32_t)(ctx->count[0] & 63), rlen = len, j;    const unsigned char *sp = data;    unsigned char       *p = ((unsigned char*)ctx->wdat) + (ctx->count[0] & 63);    while(rlen >= free)     /* tranfer whole blocks while possible  */    {        memcpy(p, sp, free);        if((ctx->count[0] += free) < free)            ++(ctx->count[1]);        sp += free; rlen -= free; free = 64;         p = (unsigned char*)ctx->wdat;#if defined(SWAP_BYTES)        for(j = 0; j < 16; ++j)            ctx->wdat[j] = bswap_32(ctx->wdat[j]);#endif        sha256_compile(ctx);    }    memcpy(p, sp, rlen);    /* transfer partial block               */    if((ctx->count[0] += rlen) < rlen)        ++(ctx->count[1]);    p = (unsigned char*)ctx->wdat;    rlen = (ctx->count[0] & 63);    while(rlen & 3)         /* ensure rest of 32-bit word is zero   */        *(p + rlen++) = 0;	/* [could be done in sha256_end()]		*/}#elif defined(WORD_COPY)    /* alternative implementations          */void sha256_hash(const unsigned char data[], unsigned long len, sha256_ctx ctx[1]){   uint32_t i = 0, *ptr, cnt, val, j;    ptr = ctx->wdat + ((ctx->count[0] >> 2) & 15);    cnt = (ctx->count[0] << 3) & 24;    val = (cnt ? *ptr : 0);    while(i < len)    {   /* assemble values in big-endian format */        val |= ((uint32_t)data[i++]) << 24 - cnt;        if(!++(ctx->count[0])) ++(ctx->count[1]);        if(!(cnt = (cnt + 8) & 24))        {   *ptr++ = val; val = 0;            if(ptr - ctx->wdat == 16)             {                sha256_compile(ctx);                 ptr = ctx->wdat;            }        }    }    *ptr = val;}#elsevoid sha256_hash(const unsigned char data[], unsigned long len, sha256_ctx ctx[1]){   uint32_t i = 0, cnt = ctx->count[0], j;    while(i < len)    {   /* assemble values in big-endian format */        if((cnt & 3) == 0) ctx->wdat[(cnt >> 2) & 15] = 0;        ctx->wdat[(cnt >> 2) & 15] |= (uint32_t)data[i++] << (24 - (8 * (cnt & 3)));        if(!++(ctx->count[0])) ++(ctx->count[1]);        if((++cnt & 63) == 0)         {            sha256_compile(ctx);        }    }}#endif/* SHA256 Final padding and digest calculation  */void sha256_end(unsigned char hval[], sha256_ctx ctx[1]){   uint32_t    i, j, cnt = (uint32_t)(ctx->count[0] & 63);#if defined(SWAP_BYTES)        for(i = 0, j = (cnt + 3) >> 2; i < j; ++i)            ctx->wdat[i] = bswap_32(ctx->wdat[i]);#endif    /* we are now in big-endian order within the ctx->wdat[] buffer	*/	/* we now need to add the padding which is a single 1 bit and	*/	/* as many zero bits as necessary. Start by padding out the		*/	/* last valid 32-bit word in the buffer							*/    if(cnt & 3)        ctx->wdat[(cnt >> 2) & 15] |= x_32(00000080) << (24  - (8 * (cnt & 3)));    else        ctx->wdat[(cnt >> 2) & 15] = x_32(80000000);    if((cnt & 63) > 55)	/* there is not enough space in the buffer	*/    {					/* for the length field - pad and empty it	*/        if((cnt & 63) == 55) ctx->wdat[14] = 0;        if((cnt & 63) <= 59) ctx->wdat[15] = 0;        sha256_compile(ctx);        cnt = 0;    }    else	/* compute a word index for the empty buffer positions	*/        cnt = (cnt >> 2) + 1;    while(cnt < 14)	/* and zero pad all but last two positions		*/         ctx->wdat[cnt++] = 0;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -