⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gfourier.cpp

📁 一个非常有用的开源代码
💻 CPP
字号:
/*	Copyright (C) 2006, Mike Gashler	This library is free software; you can redistribute it and/or	modify it under the terms of the GNU Lesser General Public	License as published by the Free Software Foundation; either	version 2.1 of the License, or (at your option) any later version.	see http://www.gnu.org/copyleft/lesser.html*/#include "GFourier.h"#include <math.h>#include "GMacros.h"inline int ReverseBits(int nValue, int nBits){    int n;	int nReversed = 0;    for(n = 0; n < nBits; n++)    {        nReversed = (nReversed << 1) | (nValue & 1);        nValue >>= 1;    }    return nReversed;}bool GFourier::FFT(struct ComplexNumber* pComplexNumberArray, int nArraySize, bool bInverse){	double* pData = (double*)pComplexNumberArray;	// Make sure nArraySize is a power of 2	if(nArraySize & (nArraySize - 1))	{		GAssert(false, "Error, nArraySize must be a power of 2");		return false;	}		// Calculate the Log2 of nArraySize and put it in nBits	int n = 1;	int nBits = 0;	while(n < nArraySize)	{		n <<= 1;		nBits++;	}	// Move the data to it's reversed-bit position	int nTotalSize = nArraySize << 1;	double* pTmp = new double[nArraySize << 1];	int nReversed;	for(n = 0; n < nArraySize; n++)	{		nReversed = ReverseBits(n, nBits);		pTmp[nReversed << 1] = pData[n << 1];		pTmp[(nReversed << 1) + 1] = pData[(n << 1) + 1];	}	for(n = 0; n < nTotalSize; n++)		pData[n] = pTmp[n];	delete(pTmp);	// Calculate the angle numerator	double dAngleNumerator;	if(bInverse)		dAngleNumerator = 2.0 * PI;	else		dAngleNumerator = -2.0 * PI;	// Do the Fast Forier Transform	double dR0, dR1, dR2, dR3, dI0, dI1, dI2, dI3;	int n2;	int nStart;	int nHalfBlockSize;	for(nHalfBlockSize = 1; nHalfBlockSize < nArraySize; nHalfBlockSize <<= 1)	{		// Calculate angles, sines, and cosines		double dAngleDelta = dAngleNumerator / ((double)(nHalfBlockSize << 1));		double dCos1 = cos(-dAngleDelta);		double d2Cos1 = 2 * dCos1; // So we don't have to calculate this a bunch of times		double dCos2 = cos(-2 * dAngleDelta);		double dSin1 = sin(-dAngleDelta);		double dSin2 = sin(-2 * dAngleDelta);		// Do each block		for(nStart = 0; nStart < nArraySize; nStart += (nHalfBlockSize << 1))		{			dR1 = dCos1;			dR2 = dCos2;			dI1 = dSin1;			dI2 = dSin2;			int nEnd = nStart + nHalfBlockSize;			for(n = nStart; n < nEnd; n++)			{				dR0 = d2Cos1 * dR1 - dR2;				dR2 = dR1;				dR1 = dR0;				dI0 = d2Cos1 * dI1 - dI2;				dI2 = dI1;				dI1 = dI0;				n2 = n + nHalfBlockSize;				dR3 = dR0 * pData[n2 << 1] - dI0 * pData[(n2 << 1) + 1];				dI3 = dR0 * pData[(n2 << 1) + 1] + dI0 * pData[n2 << 1];				pData[n2 << 1] = pData[n << 1] - dR3;				pData[(n2 << 1) + 1] = pData[(n << 1) + 1] - dI3;				pData[n << 1] += dR3;				pData[(n << 1) + 1] += dI3;			}		}	}	// Normalize output if we're doing the inverse forier transform	if(bInverse)	{		for(n = 0; n < nTotalSize; n++)			pData[n] /= (double)nArraySize;	}	return true;}bool GFourier::FFT2D(struct ComplexNumber* p2DComplexNumberArray, int nArrayWidth, bool bInverse){	double* pData = (double*)p2DComplexNumberArray;	double* pTmpArray = new double[nArrayWidth << 1];	int x, y;	for(y = 0; y < nArrayWidth; y++)	{		for(x = 0; x < nArrayWidth; x++)		{			pTmpArray[x << 1] = pData[(nArrayWidth * y + x) << 1];			pTmpArray[(x << 1) + 1] = pData[((nArrayWidth * y + x) << 1) + 1];		}		if(!FFT((struct ComplexNumber*)pTmpArray, nArrayWidth, bInverse))		{			delete(pTmpArray);			return false;		}		for(x = 0; x < nArrayWidth; x++)		{			pData[(nArrayWidth * y + x) << 1] = pTmpArray[x << 1];			pData[((nArrayWidth * y + x) << 1) + 1] = pTmpArray[(x << 1) + 1];		}	}	for(x = 0; x < nArrayWidth; x++)	{		for(y = 0; y < nArrayWidth; y++)		{			pTmpArray[y << 1] = pData[(nArrayWidth * y + x) << 1];			pTmpArray[(y << 1) + 1] = pData[((nArrayWidth * y + x) << 1) + 1];		}		if(!FFT((struct ComplexNumber*)pTmpArray, nArrayWidth, bInverse))		{			delete(pTmpArray);			return false;		}		for(y = 0; y < nArrayWidth; y++)		{			pData[(nArrayWidth * y + x) << 1] = pTmpArray[y << 1];			pData[((nArrayWidth * y + x) << 1) + 1] = pTmpArray[(y << 1) + 1];		}	}	delete(pTmpArray);	return true;}#ifndef NO_TEST_CODEvoid GFourier::Test(){	struct ComplexNumber cn[4];	cn[0].dReal = 1;	cn[0].dImag = 0;	cn[1].dReal = 1;	cn[1].dImag = 0;	cn[2].dReal = 1;	cn[2].dImag = 0;	cn[3].dReal = 1;	cn[3].dImag = 0;	GFourier::FFT(cn, 4);	if(cn[0].dReal != 4)		throw "wrong answer";	if(cn[0].dImag != 0)		throw "wrong answer";	int n;	for(n = 1; n < 3; n++)	{		if(cn[n].dReal != 0)			throw "wrong answer";		if(cn[n].dImag != 0)			throw "wrong answer";	}	GFourier::FFT(cn, 4, true);	for(n = 0; n < 3; n++)	{		if(cn[n].dReal != 1)			throw "wrong answer";		if(cn[n].dImag != 0)			throw "wrong answer";	}}#endif // NO_TEST_CODE

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -