⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 type_gmath.html

📁 一个非常有用的开源代码
💻 HTML
字号:
<html><head><title>Generated Documentation</title></head><body>	<image src="headerimage.png">	<br><br><table><tr><td><big><big><big style="font-family: arial;"><b>GMath</b></big></big></big><br><br></td><td></td></tr></table><br><br><big><big><i>Statics (public)</i></big></big><br><div style="margin-left: 40px;">int <big><b>analogToDigital</b></big>(double dVal, int nValues)<br><div style="margin-left: 80px;"><font color=brown> Converts an analog value in the range 0-1 to a digital value</font></div><br>double <big><b>digitalToAnalog</b></big>(double nVal, int nValues)<br><div style="margin-left: 80px;"><font color=brown> Converts a digital value to analog.  Typically the digital value will be discreet, but for applications of interpolation it may be non-discreet, so it's a double instead of an int.</font></div><br>double <big><b>gamma</b></big>(double x)<br><div style="margin-left: 80px;"><font color=brown> The gamma function</font></div><br>double <big><b>gaussian</b></big>(double x)<br><div style="margin-left: 80px;"><font color=brown> The gaussian function</font></div><br>void <big><b>NewtonPolynomial</b></big>(const double* pTValues, double* pFuncValues, int nPoints)<br><div style="margin-left: 80px;"><font color=brown> This implements Newton's method for determining a polynomial f(t) that goes through all the control points pFuncValues at pTValues.  (You could then convert to a Bezier curve to get a Bezier curve that goes through those points.)  The polynomial coefficients are put in pFuncValues in the form c0 + c1*t + c2*t*t + c3*t*t*t + ...</font></div><br>double <big><b>sigmoid</b></big>(double x, double steepness)<br><div style="margin-left: 80px;"><font color=brown> The sigmoid function.  It goes through the points (-inf, 0) and (inf, 1) with a slope of 0 and through (0, .5) with a slope related to steepness</font></div><br>double <big><b>sigmoidDerivative</b></big>(double x, double steepness)<br><div style="margin-left: 80px;"><font color=brown> This evaluates the derivative of the sigmoid function</font></div><br>double <big><b>smoothedIdentity</b></big>(double x, double steepness)<br><div style="margin-left: 80px;"><font color=brown> Calculates a function that always goes through (0, 0) and (1, 1) with a slope of 0, and (0.5, 0.5) with a slope that has some relation to steepness.  Here's an ascii-art representation of the function:                _---(1,1)                /              /(0.5, 0.5)            _/    (0,0)--- This function is a derived from the Butterworth function, but it's a little bit different.</font></div><br></div><br></body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -