⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 marklink.cpp

📁 蚁群算法和遗传算法程序c语言代码
💻 CPP
📖 第 1 页 / 共 5 页
字号:
		
				if (rand()%100 > 20)
				{
					double wheel_pos = probability[j][num_sections] * (rand()%100)/100;
					n=0;
					while (probability[j][n]<wheel_pos) n++;
				}
				path[k][j]=n;  //第j个节点上,第k只蚂蚁选择第0.n处
				path1[k][j][n] = true;
	
				current.x = vertex[j+1][0].x + (vertex[j+1][1].x - vertex[j+1][0].x)*n/num_sections;  //在当前路径点的调节中,蚂蚁选择的路径点
				current.y = vertex[j+1][0].y + (vertex[j+1][1].y - vertex[j+1][0].y)*n/num_sections;
					
				length_total[k]  = length_total[k] +  line_length(front,current);  //计算第k只蚂蚁走过的总路径 
				front = current;
			}  //end of j(0~num 需要调整的节点数)		

			length_total[k]  = length_total[k] +  line_length(front,end);  //计算第k只蚂蚁走过的总路径 
	//		cout << "第"<<i<<"次循环 第"<<k<<"只蚂蚁所走的路径是"<<length_total[k]<<endl;
			if (length_total[k] < length_best_path)
			{
				//更新路径节点+路径长度;
				flag = true;
				for (j = 0; j< num_path_node-1 ; j++)
				{
					y[j]=path[k][j];
					for (m = 0; m <= num_sections ; m++)
					{
						best_path[j][m] =path1[k][j][m]; 
					}
				}
				length_best_path = length_total[k];
			}

        w= rand()%(num_path_node-1);
//		p= rand()%(num_sections+1);
//		for (w=0; w<num_path_node-1;w++)
//		{
			for(p =0;p<=num_sections;p++)
				{
					if (p!=y[w])
					{
						POINT before,now;
						before.x=start.x;
						before.y=start.y;

						double length=0;
						for (q=0;q<num_path_node-1;q++)
						{
							if (q == w) 
							{
								now.x = vertex[q+1][0].x+(vertex[q+1][1].x-vertex[q+1][0].x)*p/num_sections;
								now.y = vertex[q+1][0].y+(vertex[q+1][1].y-vertex[q+1][0].y)*p/num_sections;
							}
							else 
							{
								now.x = vertex[q+1][0].x+(vertex[q+1][1].x-vertex[q+1][0].x)*y[q]/num_sections;
								now.y = vertex[q+1][0].y+(vertex[q+1][1].y-vertex[q+1][0].y)*y[q]/num_sections;		
							}//end if
							length = length+line_length(before,now);
							before = now;
						}// end for q
						length = length+line_length(before,end);

						if ( length < length_best_path) 
						{
							y[w]=p;
							length_best_path = length;
							length_total[k] = length;
						}//end if
					}//end if
				}//end for p
//		}//end for w

			if(currentbest > length_total[k])
			{
				currentbest = length_total[k];
			}

/*			for( p =0;p<num_path_node-1;p++)     //更新各点的信息数
				for ( w =0;w<= num_sections;w++)
					t[p][w]=t[p][w]*s+0.1*c;
*/
		mean[i]=mean[i]+length_total[k];
		}  //end of k(蚂蚁的数量)

/*		for (j = 0; j< num_path_node-1 ; j++)
			for (m = 0; m <= num_sections ; m++)
			{
				if (best_path[j][m])	y[j]=m;
			}
*/	
		mean[i]=mean[i]/num_ants;
		for(p =0;p<num_path_node-1;p++)     //更新各点的信息数
		{
			for (w =0;w<= num_sections;w++)
			{
				t[p][w]=t[p][w]*s+0.1*c;
			}
		}
/*
		for(int p =0;p<num_path_node-1;p++)     //更新各点的信息数
		{
			for (int w =0;w<= num_sections;w++)
			{
				t[p][w]=t[p][w]*s+0.1*c;
				if (best_path[p][w])
					t[p][w]=t[p][w]+e*Q/length_best_path;  //e是一常量
	
				for (k = 0; k<num_ants; k++)
				{
					if (path1[k][p][w])
						t[p][w]=t[p][w]+Q/length_total[k];  //Q是一常量
				}//end for k			
			}//end for w
		}//end for p
*/
		if(flag)
		{
			for(p =0;p<num_path_node-1;p++)     //更新各点的信息数
			{
				t[p][y[p]]=t[p][y[p]]+e*Q/length_best_path;  //e是一常量				
			}
		}

		for (k = 0; k < num_ants ; k++)
		{
			deviation[i]=deviation[i]+(length_total[k]-mean[i])*(length_total[k]-mean[i]);
		}
		deviation[i] = sqrt(deviation[i]/num_ants);
		cout <<length_best_path<<" "<<mean[i]<<" "<<deviation[i]<<endl;
//		cout <<mean[i]<<" ";
//		cout << "第"<<i<<"次循环中的最短路径是 "<<length_best_path<<" "<<y[0]<<" "<<y[1]<<" "<<y[2]<<" "<<y[3]<<" "<<y[4]<<" "<<y[5]<<endl<<endl;
	}//end of i (循环的次数)


/*
	cout <<endl;
	for(i=0; i<=num_cycle; i++)
	{
		cout << deviation[i] <<" ";
	}
*/	return(length_best_path);
}

double  acs_1()
{
	double t[MAX][num_sections+1]; // 存储节点上的信息量
	int  path[num_ants][MAX];  //存储第k个蚂蚁在第n个节点的上的选择区域
	bool  path1[num_ants][MAX][num_sections+1];   //当第k个蚂蚁经过第n个节点的第m个区域时为true
	double probability[MAX][num_sections+1];   //蚂蚁经过第n个节点的第m个区域的概率
	double length_total[num_ants];  //存储每只蚂蚁所走相应路径的长度
	bool  best_path[MAX][num_sections+1];
	double d[MAX][num_sections+1];   //能见度
	bool flag;   //标记此次循环中是否找到了更优解

	int p,q,w;

	for( p =0;p< num_path_node-1;p++)     //初始化各节点上的信息量
		for ( w =0;w<= num_sections;w++)              //num_path_node 用floyd算法求出的最短路径上的顶点数(包括起点和终点,且是从0开始计数)
		{                                 //但是用蚁群算法只要调节除起点和终点以外的点,这些点的总数是num_path_node+1-2
			t[p][w]=c;                  //在记录路径时,只考虑之间需要调节的路径点,他们在middle中相应的下标为此时的下标+1
			
			if (w ==5)
				best_path[p][w] = true;
			else  
				best_path[p][w] = false;
		}

	for( p =0;p<num_ants;p++)     
		for (q = 0; q< num_path_node-1;q++)
			for ( w =0;w<=num_sections;w++)
				path1[p][q][w]=false;

	for( p =0;p<num_ants;p++)     //初始化各蚂蚁的初始路径,均为0.5
		for ( q =0;q< num_path_node-1;q++)
		{
			path[p][q] = 5;
			path1[p][q][5]=true;
		}
	
	int y[MAX];  //初始t参数
	for ( q =0;q< num_path_node-1;q++)
		y[q]=num_sections/2;

	int i,j,k,m;
	for (i = 0; i < num_cycle ; i++)
	{
		flag= false;		
//		length_best_path = infinite;
		for(k = 0; k< num_ants ; k++)
		{
			length_total[k] = 0;
			
			POINT front,current;  //current定义当前调节的节点,front定义当前节点的前一节点
			front = start;
			int n;	
//			double high=0;

			for (j = 0; j< num_path_node-1 ; j++ )
			{
//				n=0;
				for (m = 0; m <= num_sections ; m++)  //计算各个区间的能见度
				{	
					d[j][m] = ( num_sections- abs(m-y[j]) )/(num_sections+1.0);        //能见度
 					probability[j][m]= pow(t[j][m],f)*pow(d[j][m],v);    //各个顶点的信息量(信息激素+能见度)
//					if (high < probability[j][m]) 
//					{
//						high = probability[j][m];
//						n=m;    //n是最大值对应的num_section
//					}
					if (m) probability[j][m]=probability[j][m]+probability[j][m-1];
				}  //end of m (0~11)
		
//				if (rand()%100 > 80)
//				{
					double wheel_pos = probability[j][num_sections] * (rand()%100)/100;
					n=0;
					while (probability[j][n]<wheel_pos) n++;
//				}
				path[k][j]=n;  //第j个节点上,第k只蚂蚁选择第0.n处
				path1[k][j][n] = true;
	
				current.x = vertex[j+1][0].x + (vertex[j+1][1].x - vertex[j+1][0].x)*n/num_sections;  //在当前路径点的调节中,蚂蚁选择的路径点
				current.y = vertex[j+1][0].y + (vertex[j+1][1].y - vertex[j+1][0].y)*n/num_sections;
					
				length_total[k]  = length_total[k] +  line_length(front,current);  //计算第k只蚂蚁走过的总路径 
				front = current;
			}  //end of j(0~num 需要调整的节点数)		

			length_total[k]  = length_total[k] +  line_length(front,end);  //计算第k只蚂蚁走过的总路径 
	//		cout << "第"<<i<<"次循环 第"<<k<<"只蚂蚁所走的路径是"<<length_total[k]<<endl;
			if (length_total[k] < length_best_path)
			{
				//更新路径节点+路径长度;
				flag = true;
				for (j = 0; j< num_path_node-1 ; j++)
				{
					y[j]=path[k][j];
					for (m = 0; m <= num_sections ; m++)
					{
						best_path[j][m] =path1[k][j][m]; 
					}
				}
				length_best_path = length_total[k];
			}

        w= rand()%(num_path_node-1);
//		p= rand()%(num_sections+1);
//		for (w=0; w<num_path_node-1;w++)
//		{
			for(p =0;p<=num_sections;p++)
				{
					if (p!=y[w])
					{
						POINT before,now;
						before.x=start.x;
						before.y=start.y;

						double length=0;
						for (q=0;q<num_path_node-1;q++)
						{
							if (q == w) 
							{
								now.x = vertex[q+1][0].x+(vertex[q+1][1].x-vertex[q+1][0].x)*p;
								now.y = vertex[q+1][0].y+(vertex[q+1][1].y-vertex[q+1][0].y)*p;
							}
							else 
							{
								now.x = vertex[q+1][0].x+(vertex[q+1][1].x-vertex[q+1][0].x)*y[q];
								now.y = vertex[q+1][0].y+(vertex[q+1][1].y-vertex[q+1][0].y)*y[q];		
							}//end if
							length = length+line_length(before,now);
							before = now;
						}// end for q
						length = length+line_length(before,end);

						if ( length < length_best_path) 
						{
							y[w]=p;
							length_best_path = length;
						}//end if
					}//end if
				}//end for p
//		}//end for w

/*			for( p =0;p<num_path_node-1;p++)     //更新各点的信息数
				for ( w =0;w<= num_sections;w++)
					t[p][w]=t[p][w]*s+0.1*c;
*/
		}  //end of k(蚂蚁的数量)

/*		for (j = 0; j< num_path_node-1 ; j++)
			for (m = 0; m <= num_sections ; m++)
			{
				if (best_path[j][m])	y[j]=m;
			}
*/	

		for(p =0;p<num_path_node-1;p++)     //更新各点的信息数
		{
			for (w =0;w<= num_sections;w++)
			{
				t[p][w]=t[p][w]*s+0.1*c;
			}
		}

/*		for(int p =0;p<num_path_node-1;p++)     //更新各点的信息数
		{
			for (int w =0;w<= num_sections;w++)
			{
				t[p][w]=t[p][w]*s+0.1*c;
				if (best_path[p][w])
					t[p][w]=t[p][w]+e*Q/length_best_path;  //e是一常量
	
				for (k = 0; k<num_ants; k++)
				{
					if (path1[k][p][w])
						t[p][w]=t[p][w]+Q/length_total[k];  //Q是一常量
				}//end for k			
			}//end for w
		}//end for p
*/
		if(flag)
		{
			for(p =0;p<num_path_node-1;p++)     //更新各点的信息数
			{
				t[p][y[p]]=t[p][y[p]]+e*Q/length_best_path;  //e是一常量				
			}
		}
		
		cout << "第"<<i<<"次循环中的最短路径是 "<<length_best_path<<" "<<y[0]<<" "<<y[1]<<" "<<y[2]<<" "<<y[3]<<" "<<y[4]<<" "<<y[5]<<endl<<endl;
	}//end of i (循环的次数)

	return(length_best_path);
}

double  acs_2()
{
	double t[MAX][num_sections+1]; // 存储节点上的信息量
	int  path[num_ants][MAX];  //存储第k个蚂蚁在第n个节点的上的选择区域
	bool  path1[num_ants][MAX][num_sections+1];   //当第k个蚂蚁经过第n个节点的第m个区域时为true
	double probability[MAX][num_sections+1];   //蚂蚁经过第n个节点的第m个区域的概率
	double length_total[num_ants];  //存储每只蚂蚁所走相应路径的长度
	bool  best_path[MAX][num_sections+1];
	double d[MAX][num_sections+1];   //能见度
	bool flag;   //标记此次循环中是否找到了更优解
//	double currentbest; //记录每次循环中的路径最优值
	double deviation[num_cycle]; //标准偏差
	double mean[num_cycle]; //记录每次循环平均值
//	clock_t start_time, finish_time;  //记录每次循环起止的时间
//  double  duration[num_cycle];    //记录每次循环所用的时间

	int p,q,w;

	for( p =0;p< num_path_node-1;p++)     //初始化各节点上的信息量
		for ( w =0;w<= num_sections;w++)              //num_path_node 用floyd算法求出的最短路径上的顶点数(包括起点和终点,且是从0开始计数)
		{                                 //但是用蚁群算法只要调节除起点和终点以外的点,这些点的总数是num_path_node+1-2
			t[p][w]=c;                  //在记录路径时,只考虑之间需要调节的路径点,他们在middle中相应的下标为此时的下标+1
			
			if (w ==5)
				best_path[p][w] = true;
			else  
				best_path[p][w] = false;
		}

	for( p =0;p<num_ants;p++)     
		for (q = 0; q< num_path_node-1;q++)
			for ( w =0;w<=num_sections;w++)
				path1[p][q][w]=false;

	for( p =0;p<num_ants;p++)     //初始化各蚂蚁的初始路径,均为0.5
		for ( q =0;q< num_path_node-1;q++)
		{
			path[p][q] = 5;
			path1[p][q][5]=true;
		}
	
	int y[6],y_best[6];  //初始t参数
	for ( q =0;q< num_path_node-1;q++)
	{
		y[q]=num_sections/2;
		y_best[q]=num_sections/2;
	}

	int best_cycle=0;   //标识在第i次循环中寻找到最短路径
	int i,j,k,m;
	for (i = 0; i < num_cycle ; i++)
	{
//	    start_time = clock();
		flag= false;		
//		length_best_path = infinite;
		mean[i]=0;
		deviation[i]=0;

		for(k = 0; k< num_ants ; k++)
		{
			length_total[k] = 0;
			
			POINT front,current;  //current定义当前调节的节点,front定义当前节点的前一节点
			front = start;
			int n;	
			double high ;

			for (j = 0; j< num_path_node-1 ; j++ )
			{
				n=0;
				high=0;
				for (m = 0; m <= num_sections ; m++)  //计算各个区间的能见度
				{	
					d[j][m] = ( num_sections- abs(m-y[j]) )/(num_sections+1.0);        //能见度
 					probability[j][m]= pow(t[j][m],f)*pow(d[j][m],v);    //各个顶点的信息量(信息激素+能见度)
 					if (high < probability[j][m]) 
					{
						high = probability[j][m];
						n=m;    //n是最大值对应的num_section
					}
					if (m) probability[j][m]=probability[j][m]+probability[j][m-1];
				}  //end of m (0~11)		

				if (rand()%100 > 90   )
				{
					double wheel_pos = probability[j][num_sections] * (rand()%100)/100;
					n=0;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -