📄 idct.c
字号:
/* ***** BEGIN LICENSE BLOCK *****
* Source last modified: $Id: idct.c,v 1.3.40.1 2004/07/09 01:56:22 hubbe Exp $
*
* Portions Copyright (c) 1995-2004 RealNetworks, Inc. All Rights Reserved.
*
* The contents of this file, and the files included with this file,
* are subject to the current version of the RealNetworks Public
* Source License (the "RPSL") available at
* http://www.helixcommunity.org/content/rpsl unless you have licensed
* the file under the current version of the RealNetworks Community
* Source License (the "RCSL") available at
* http://www.helixcommunity.org/content/rcsl, in which case the RCSL
* will apply. You may also obtain the license terms directly from
* RealNetworks. You may not use this file except in compliance with
* the RPSL or, if you have a valid RCSL with RealNetworks applicable
* to this file, the RCSL. Please see the applicable RPSL or RCSL for
* the rights, obligations and limitations governing use of the
* contents of the file.
*
* Alternatively, the contents of this file may be used under the
* terms of the GNU General Public License Version 2 or later (the
* "GPL") in which case the provisions of the GPL are applicable
* instead of those above. If you wish to allow use of your version of
* this file only under the terms of the GPL, and not to allow others
* to use your version of this file under the terms of either the RPSL
* or RCSL, indicate your decision by deleting the provisions above
* and replace them with the notice and other provisions required by
* the GPL. If you do not delete the provisions above, a recipient may
* use your version of this file under the terms of any one of the
* RPSL, the RCSL or the GPL.
*
* This file is part of the Helix DNA Technology. RealNetworks is the
* developer of the Original Code and owns the copyrights in the
* portions it created.
*
* This file, and the files included with this file, is distributed
* and made available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY
* KIND, EITHER EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS
* ALL SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET
* ENJOYMENT OR NON-INFRINGEMENT.
*
* Technology Compatibility Kit Test Suite(s) Location:
* http://www.helixcommunity.org/content/tck
*
* Contributor(s):
*
* ***** END LICENSE BLOCK ***** */
#include <math.h>
#include "dllindex.h"
#include "h261defs.h"
#include "h261func.h"
#include "clip.h"
#include "h263plus.h"
#ifdef _MACINTOSH
#include <string.h> // for memset
#endif
#ifndef UNREFERENCED_PARAMETER
#define UNREFERENCED_PARAMETER(x) (x) = (x)
#endif
extern S16 Recon [QUANT_MAX - QUANT_MIN + 1] [N_SYM_INDICES];
// Function prototypes
static void init_inv_dct (void);
static void Fix_PTel_S4000_mismatch( void );
static void truncate_more( S32 * idct_tab_entry );
static void idct2_goertzel( SYMBOL sym[], int nsym, S32 x[8][4],
S16 recon[], int intra, int clean, int idct_class );
static int idct2_energy_test( SYMBOL sym[], int nsym,
S16 recon[] );
static void recon_intra_dc( U8 index, S32 vec[8]);
static void recon_dc( S32 y, S32 vec[8]);
static void recon_hor_ac( S32 y, S32 vec[8]);
static void recon_vert_ac( S32 y, S32 vec[8]);
static void update( S32 x[8], S32 index, S32 table[][8*8*8]);
static double dctfunc (int freq, int index);
static S32 dct_tab_entry (double x, double y);
static S32 combine (S32 iy, S32 ix);
extern void idct2_advanced_intra( SYMBOL sym[], int nsym, S32 x[8][4], S16 recon[],
U8 rDCpred, S8 rACpred[8], U8 rDCstore[1], S8 rACstore[8],
U8 cDCpred, S8 cACpred[8], U8 cDCstore[1], S8 cACstore[8],
int predtype, int fixedDC, int leftBoundary, int upperBoundary);
#define PI 3.141592654
#define FRACBITS 6 /* Fractional bits in IDCT computation */
#define SCALE_FACTOR 64. /* 2**FRACBITS */
#define MAX_DCT_INDEX 1024
#define IDCT_NTAB1_BITS 5
#define IDCT_NTAB1_SIZE 32 /* 2**NTAB1_BITS entries in table for small values */
#define IDCT_NTAB2_SIZE ((MAX_DCT_INDEX - 1) / IDCT_NTAB1_SIZE)
/* Entries to handle values > NTAB1_SIZE */
#define PIXEL_MIN 0
#define PIXEL_MAX 255
#define CLIPMARGIN 300
#define CLIPMIN (PIXEL_MIN - CLIPMARGIN)
#define CLIPMAX (PIXEL_MAX + CLIPMARGIN)
#define N_DCT_INDEX 1024
// Reconstruction levels for QUANT = 1,2,..,31
S16 Recon [QUANT_MAX - QUANT_MIN + 1] [N_SYM_INDICES];
// Define zigzag scanning pattern
static int ZigZag[64] = { 0, 1, 5, 6, 14, 15, 27, 28,
2, 4, 7, 13, 16, 26, 29, 42,
3, 8, 12, 17, 25, 30, 41, 43,
9, 11, 18, 24, 31, 40, 44, 53,
10, 19, 23, 32, 39, 45, 52, 54,
20, 22, 33, 38, 46, 51, 55, 60,
21, 34, 37, 47, 50, 56, 59, 61,
35, 36, 48, 49, 57, 58, 62, 63
};
static int InvZZ[64];
static S32 idct_tab [(IDCT_NTAB1_SIZE + IDCT_NTAB2_SIZE)][8*8][8];
/* LUT for all coeffs; [amplitude][zigzag position][] */
static S32 dc_tab [MAX_DCT_INDEX]; /* LUT for DC coeff */
static S32 hor_ac_tab [MAX_DCT_INDEX][2]; /* LUT for 1st hor AC coeff */
static S32 vert_ac_tab [MAX_DCT_INDEX][4]; /* LUT for 1st vert AC coeff */
static S32 intra_dc_tab[N_SYM_INDICES]; /* LUT for INTRA DC coeff */
PIXEL clip[(CLIPMAX-CLIPMIN+1)]; /* LUT to limit to 0-255 */
static int even_odd_index[8*8]; /* Classify zigzag pos. as even or odd */
extern void InitReconTables( void )
{
int level, index, quant;
// QUANT=1 => 3,5,7,...
// QUANT=2 => 5,9,13,...
// QUANT=3 => 9,15,21,...
// QUANT=4 => 11,19,27,...
for (quant = QUANT_MIN; quant <= QUANT_MAX; quant++) {
index = (quant + 1) / 2;
for (level = 1; level < N_SYM_INDICES/2; level++) {
index += quant;
index = min( index, N_DCT_INDEX);
Recon [quant - QUANT_MIN] [level] = index;
Recon [quant - QUANT_MIN] [N_SYM_INDICES-level] = -index;
}
Recon [quant - QUANT_MIN] [0] = 0;
}
/* Generate zigzag table */
for (index = 0; index < 64; index++) {
InvZZ[ ZigZag[index] ] = index;
}
init_inv_dct();
return;
}
// Idct2 - Reconstruct DCT coeffs, perform IDCT, and clip to allowed pixel range */
// Requires nsym > 0
extern void Idct2( SYMBOL sym[], int nsym, PIXEL x[], int xdim, S16 recon[], int clean)
{
union {
S16 bshort[8][8];
S32 blong[8][4];
} block; /* Output from IDCT */
int intra;
int idct_class;
idct_class = GENERAL; /* assume the general case */
/* look for situations involving specific involving 1,2,3 symbols */
if (sym[0].type==0)
{
switch (nsym)
{
case 1:
idct_class = DC_ONLY;
break;
case 2:
if (sym[1].type == 0)
idct_class = DC_AC_H;
if (sym[1].type == 1)
idct_class = DC_AC_V;
break;
case 3:
if ( (sym[1].type | sym[2].type) == 0)
idct_class = DC_3;
break;
}
}
intra = YES;
switch (idct_class)
{
case DC_ONLY:
{
idct2_goertzel( sym, nsym, block.blong, recon, intra, clean, DC_ONLY);
idct2_clip(x, xdim, block.blong, DC_ONLY);
break;
}
case DC_AC_H:
{
idct2_goertzel( sym, nsym, block.blong, recon, intra, clean, DC_AC_H);
idct2_clip(x, xdim, block.blong, DC_AC_H);
break;
}
case DC_AC_V:
{
idct2_goertzel( sym, nsym, block.blong, recon, intra, clean, DC_AC_V);
idct2_clip(x, xdim, block.blong, GENERAL);
break;
}
case DC_3:
{
idct2_goertzel( sym, nsym, block.blong, recon, intra, clean, DC_3);
idct2_clip(x, xdim, block.blong, GENERAL);
break;
}
default:
{
idct2_goertzel( sym, nsym, block.blong, recon, intra, clean, GENERAL);
idct2_clip(x, xdim, block.blong, GENERAL);
}
}
return;
}
// Idct2Sum - Reconstruct DCT coeffs, perform IDCT, add to predition,
// and clip to allowed pixel range. Requires nsym > 0
extern void Idct2Sum( SYMBOL sym[], int nsym, PIXEL x[], int xdim, S16 recon[],int clean)
{
union {
S16 bshort[8][8];
S32 blong[8][4];
} block; /* Output from IDCT */
int intra;
int idct_class;
idct_class = GENERAL; /* assume the general case */
/* look for situations involving specific involving 1,2,3 symbols */
if (sym[0].type==0)
{
switch (nsym)
{
case 1:
idct_class = DC_ONLY;
break;
case 2:
if (sym[1].type == 0)
idct_class = DC_AC_H;
if (sym[1].type == 1)
idct_class = DC_AC_V;
break;
case 3:
if ( (sym[1].type | sym[2].type) == 0)
idct_class = DC_3;
break;
}
}
intra = NO;
// if (clean == YES || (idct2_energy_test( sym, nsym, recon) > 20)){
// activate this for sleazy IDCT in decoder
//
switch (idct_class)
{
case DC_ONLY:
{
idct2_goertzel( sym, nsym, block.blong, recon, intra, clean, DC_ONLY);
idct2sum_clip(x, xdim, block.blong, DC_ONLY);
break;
}
case DC_AC_H:
{
idct2_goertzel( sym, nsym, block.blong, recon, intra, clean, DC_AC_H);
idct2sum_clip(x, xdim, block.blong, DC_AC_H);
break;
}
case DC_AC_V:
{
idct2_goertzel( sym, nsym, block.blong, recon, intra, clean, DC_AC_V);
idct2sum_clip(x, xdim, block.blong, GENERAL);
break;
}
case DC_3:
{
idct2_goertzel( sym, nsym, block.blong, recon, intra, clean, DC_3);
idct2sum_clip(x, xdim, block.blong, GENERAL);
break;
}
default:
{
idct2_goertzel( sym, nsym, block.blong, recon, intra, clean, GENERAL);
idct2sum_clip(x, xdim, block.blong, GENERAL);
}
}
// } // activate this for sleazy IDCT in decoder
return;
}
// Idct2_s16 - Reconstruct DCT coeffs, perform IDCT, and write as signed 16-bit values
// Set output block to zero if nsym=0
extern void Idct2_s16( int intra, SYMBOL sym[], int nsym, S16 x[], int xdim, S16 recon[] )
{
int i, clean = YES;
union {
S16 bshort[8][8];
S32 blong[8][4];
} block; /* Output from IDCT */
if (nsym == 0) {
for (i = 0; i < 8; i++) {
S32 * px = (S32 *)x;
px[0] = px[1] = px[2] = px[3] = 0;
x += xdim;
}
return;
}
idct2_goertzel( sym, nsym, block.blong, recon, intra, clean, GENERAL);
// Shift out fractional bits
for (i = 0; i < 8; i++) {
x[i*xdim + 0] = block.bshort[i][0] >> FRACBITS;
x[i*xdim + 1] = block.bshort[i][1] >> FRACBITS;
x[i*xdim + 2] = block.bshort[i][2] >> FRACBITS;
x[i*xdim + 3] = block.bshort[i][3] >> FRACBITS;
x[i*xdim + 4] = block.bshort[i][7] >> FRACBITS;
x[i*xdim + 5] = block.bshort[i][6] >> FRACBITS;
x[i*xdim + 6] = block.bshort[i][5] >> FRACBITS;
x[i*xdim + 7] = block.bshort[i][4] >> FRACBITS;
}
}
// Initialize tables for inverse DCT
// Note: This routine has not been optimized for speed
static void init_inv_dct (void)
{
int i,j,m,n, index, zzpos;
double magn; /* amplitude of DCT coefficient */
static double bfunc[8][8][4][4]; /* DCT basis functions [vert freq][hor freq][][] */
for (n=0; n < 8; n++) { /* Construct 2-D basis functions */
for (m=0; m < 8; m++) {
for (j=0; j < 4; j++) {
for (i=0; i < 4; i++) {
bfunc[n][m][j][i] = SCALE_FACTOR * dctfunc(n,j) * dctfunc(m,i);
}
}
}
}
// Initialize table for INTRA DC coeff reconstruction */
for (index = 0; index < N_SYM_INDICES; index++) {
magn = 8 * index;
//printf( "Init index = %d magn = %f \n", index, magn);
intra_dc_tab [index] = dct_tab_entry (magn * bfunc[0][0][0][0],
magn * bfunc[0][0][0][1]);
}
// 128 is represented by index=255
index = 255;
magn = 8 * 128;
//printf( "Init index = %d magn = %f \n", index, magn);
intra_dc_tab [index] = dct_tab_entry (magn * bfunc[0][0][0][0],
magn * bfunc[0][0][0][1]);
// Initialize tables for DC and first two AC coeffs
for (index = 0; index < MAX_DCT_INDEX; index++) {
magn = 2*index + 1;
//printf( "Init index = %d magn = %f \n", index, magn);
dc_tab [index] = dct_tab_entry (magn * bfunc[0][0][0][0],
magn * bfunc[0][0][0][1]);
for (i = 0; i < 2; i++) {
hor_ac_tab [index][i]
= dct_tab_entry (magn * bfunc[0][1][0][2*i],
magn * bfunc[0][1][0][2*i+1]);
}
for (j = 0; j < 4; j++) {
vert_ac_tab [index][j]
= dct_tab_entry (magn * bfunc[1][0][j][0],
magn * bfunc[1][0][j][1]);
}
}
// Initialize table for all coeffs
for (index = 0; index < IDCT_NTAB1_SIZE; index++) {
magn = 2*index + 1;
//printf( "Init index = %d magn = %f \n", index, magn);
for (zzpos = 0; zzpos < 8*8; zzpos++) {
n = InvZZ[zzpos] / 8;
m = InvZZ[zzpos] % 8;
for (j=0; j < 4; j++) {
for (i=0; i < 2; i++) {
idct_tab [index][zzpos][2*j+i]
= dct_tab_entry (magn * bfunc[n][m][j][2*i],
magn * bfunc[n][m][j][2*i+1]);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -