⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 text9-26.htm

📁 浙江大学计算机学院数据结构课程的教学课件
💻 HTM
字号:
<html>
<head>
<title>Untitled Document</title>
<meta http-equiv="Content-Type" content="text/html; charset=gb2312">
</head>

<body bgcolor="#FFFFFF" link="#0000FF" vlink="#3399FF" alink="#FF0066">
<div id="Layer1" style="position:absolute; width:711px; height:21px; z-index:1; top: 10px; background-color: #CCCCCC; layer-background-color: #CCCCCC; border: 1px none #000000; left: 26px"><b>|</b><font face="宋体" size="2"><a href="../text1/text1-0.htm">第一章</a></font><b>|</b><font face="宋体" size="2"><a href="../text2/text2-0.htm">第二章</a></font><b>|</b><font face="宋体" size="2"><a href="../text3/text3-0.htm">第三章</a></font><b>|</b><font face="宋体" size="2"><a href="../text4/text4-0.htm">第四章</a></font><b>|</b><font face="宋体" size="2"><a href="../text5/text5-0.htm">第五章</a></font><b>|</b><font face="宋体" size="2"><a href="../text6/text6-0.htm">第六章</a></font><b>|</b><font face="宋体" size="2"><a href="../text7/text7-0.htm">第七章</a></font><b>|</b><font face="宋体" size="2"><a href="../text8/text8-0.htm">第八章</a></font><b>|</b><font face="宋体" size="2">第九章</font><b>|</b><font face="宋体" size="2"><a href="../text10/text10-0.htm">第十章</a></font><b>|</b><font size="2" face="宋体"><a href="../textA/textA-0.htm">算法分析</a><b><font color="#000000">|</font></b> 
  </font></div>
<pre align="left">

<b><font face="Arial, Helvetica, sans-serif" size="4" color="#000000">(4)<font color="#FF0000"> Analysis</font>

〖<font color="#FF0000">Lemma9.3</font>〗 Let a be an F-heap with n  elements that results from
 a sequence of insert, combine, delete min, delete, and decrease key 
operations performed on initially empty F-heap
   (a) Let b be any node node in any of the min-trees of a. 
        The degree of b is at most  <img src="image/logqm.gif" width="69" height="28" align="middle">  , where 
        f = ( 1+ <img src="image/sq5.gif" width="29" height="27" align="middle">  ) / 2  and m is the number of elements in the 
        subtree with root b.
   (b) MAX_DEGREE &lt;=  [ <img src="image/logqm.gif" width="69" height="28" align="middle"> ] and the actual cost of a delete 
         min is O(log n + s)

〖<font color="#FF0000">Theorem9.2</font>〗 If a sequence of n insert, combine, delete min,
 delete, and decrease keyoperations is performed on an initially 
empty F-heap, then we can amortize costs such that the amortized 
time complexity of each insert, combine, and decrease key operation
 is O(1) and that of each delete min and delete is O(log n). 
The total time complexity of the entire sequence is the sum of the
 amortized complexities of the individual operations in the sequence

</font></b></pre>
<table width="731" cellspacing="0" cellpadding="0">
  <tr> 
    <td width="327">&nbsp;</td>
    <td width="271"><a href="../index.htm"><img width="60" height="25" usemap="#MapMap4" border="0" src="../../images/home.gif"></a><a href="../index.htm"><map name="MapMap4"><area shape="rect" coords="42,-34,88,-15" href="text0.htm"><area shape="rect" coords="4,4,55,23" href="text9-index.htm"></map></a></td>
    <td width="131"><font face="楷体_GB2312" size="2"><b><a href="text9-25.htm">上一页</a> 
      <a href="text9-27.htm">下一页</a></b></font></td>
  </tr>
</table>
</body>
</html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -