⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 stl_tree.c

📁 粗糙集应用软件
💻 C
📖 第 1 页 / 共 2 页
字号:
/*
 *
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Copyright (c) 1996,1997
 * Silicon Graphics Computer Systems, Inc.
 *
 * Copyright (c) 1997
 * Moscow Center for SPARC Technology
 *
 * Copyright (c) 1999 
 * Boris Fomitchev
 *
 * This material is provided "as is", with absolutely no warranty expressed
 * or implied. Any use is at your own risk.
 *
 * Permission to use or copy this software for any purpose is hereby granted 
 * without fee, provided the above notices are retained on all copies.
 * Permission to modify the code and to distribute modified code is granted,
 * provided the above notices are retained, and a notice that the code was
 * modified is included with the above copyright notice.
 *
 */
#ifndef __STL_TREE_C
#define __STL_TREE_C

#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1375
#endif

// fbp: these defines are for outline methods definitions.
// needed for definitions to be portable. Should not be used in method bodies.
# if defined  ( __STL_NESTED_TYPE_PARAM_BUG )
#  define __iterator__        _Rb_tree_iterator<_Value, _Nonconst_traits<_Value> >
#  define __const_iterator__  _Rb_tree_iterator<_Value, _Const_traits<_Value> >
#  define __size_type__       size_t
#  define __Link_type__       _Rb_tree_node<_Value>*
#  define __Base_ptr__        _Rb_tree_node_base*
#  define __Value__      _Value
#  define __Key__        _Key
# else
#  define __iterator__  __STL_TYPENAME_ON_RETURN_TYPE _Rb_tree<_Key, _Value, _KeyOfValue, _Compare, _Alloc>::iterator
#  define __const_iterator__  __STL_TYPENAME_ON_RETURN_TYPE _Rb_tree<_Key, _Value, _KeyOfValue, _Compare, _Alloc>::const_iterator
#  define __Link_type__  __STL_TYPENAME_ON_RETURN_TYPE  _Rb_tree<_Key, _Value, _KeyOfValue, _Compare, _Alloc>::_Link_type
#  define __size_type__  __STL_TYPENAME_ON_RETURN_TYPE _Rb_tree<_Key, _Value, _KeyOfValue, _Compare, _Alloc>::size_type
#  define __Base_ptr__   __STL_TYPENAME_ON_RETURN_TYPE _Rb_tree<_Key, _Value, _KeyOfValue, _Compare, _Alloc>::_Base_ptr
#  define __Value__      __STL_TYPENAME_ON_RETURN_TYPE _Rb_tree<_Key, _Value, _KeyOfValue, _Compare, _Alloc>::value_type
#  define __Key__        typename _Rb_tree<_Key, _Value, _KeyOfValue, _Compare, _Alloc>::key_type
# endif

# if defined (__STL_DEBUG)
#   define _Make_iterator(__l) iterator(&_M_iter_list,__l) 
#   define _Make_const_iterator(__l) const_iterator(&_M_iter_list,__l)
# else
#   define _Make_iterator iterator
#   define _Make_const_iterator const_iterator
# endif

__STL_BEGIN_NAMESPACE

inline void 
_Rb_tree_rotate_left(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root)
{
  _Rb_tree_node_base* __y = __x->_M_right;
  __x->_M_right = __y->_M_left;
  if (__y->_M_left !=0)
    __y->_M_left->_M_parent = __x;
  __y->_M_parent = __x->_M_parent;

  if (__x == __root)
    __root = __y;
  else if (__x == __x->_M_parent->_M_left)
    __x->_M_parent->_M_left = __y;
  else
    __x->_M_parent->_M_right = __y;
  __y->_M_left = __x;
  __x->_M_parent = __y;
}

inline void 
_Rb_tree_rotate_right(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root)
{
  _Rb_tree_node_base* __y = __x->_M_left;
  __x->_M_left = __y->_M_right;
  if (__y->_M_right != 0)
    __y->_M_right->_M_parent = __x;
  __y->_M_parent = __x->_M_parent;

  if (__x == __root)
    __root = __y;
  else if (__x == __x->_M_parent->_M_right)
    __x->_M_parent->_M_right = __y;
  else
    __x->_M_parent->_M_left = __y;
  __y->_M_right = __x;
  __x->_M_parent = __y;
}

template <class _Dummy>
void 
_Rb_global<_Dummy>::_Rebalance(_Rb_tree_node_base* __x, 
			       _Rb_tree_node_base*& __root)
{
  __x->_M_color = _S_rb_tree_red;
  while (__x != __root && __x->_M_parent->_M_color == _S_rb_tree_red) {
    if (__x->_M_parent == __x->_M_parent->_M_parent->_M_left) {
      _Rb_tree_node_base* __y = __x->_M_parent->_M_parent->_M_right;
      if (__y && __y->_M_color == _S_rb_tree_red) {
        __x->_M_parent->_M_color = _S_rb_tree_black;
        __y->_M_color = _S_rb_tree_black;
        __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;
        __x = __x->_M_parent->_M_parent;
      }
      else {
        if (__x == __x->_M_parent->_M_right) {
          __x = __x->_M_parent;
          _Rb_tree_rotate_left(__x, __root);
        }
        __x->_M_parent->_M_color = _S_rb_tree_black;
        __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;
        _Rb_tree_rotate_right(__x->_M_parent->_M_parent, __root);
      }
    }
    else {
      _Rb_tree_node_base* __y = __x->_M_parent->_M_parent->_M_left;
      if (__y && __y->_M_color == _S_rb_tree_red) {
        __x->_M_parent->_M_color = _S_rb_tree_black;
        __y->_M_color = _S_rb_tree_black;
        __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;
        __x = __x->_M_parent->_M_parent;
      }
      else {
        if (__x == __x->_M_parent->_M_left) {
          __x = __x->_M_parent;
          _Rb_tree_rotate_right(__x, __root);
        }
        __x->_M_parent->_M_color = _S_rb_tree_black;
        __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;
        _Rb_tree_rotate_left(__x->_M_parent->_M_parent, __root);
      }
    }
  }
  __root->_M_color = _S_rb_tree_black;
}

template <class _Dummy>
_Rb_tree_node_base*
_Rb_global<_Dummy>::_Rebalance_for_erase(_Rb_tree_node_base* __z,
					 _Rb_tree_node_base*& __root,
					 _Rb_tree_node_base*& __leftmost,
					 _Rb_tree_node_base*& __rightmost)
{
  _Rb_tree_node_base* __y = __z;
  _Rb_tree_node_base* __x = 0;
  _Rb_tree_node_base* __x_parent = 0;
  if (__y->_M_left == 0)     // __z has at most one non-null child. y == z.
    __x = __y->_M_right;     // __x might be null.
  else
    if (__y->_M_right == 0)  // __z has exactly one non-null child. y == z.
      __x = __y->_M_left;    // __x is not null.
    else {                   // __z has two non-null children.  Set __y to
      __y = __y->_M_right;   //   __z's successor.  __x might be null.
      while (__y->_M_left != 0)
        __y = __y->_M_left;
      __x = __y->_M_right;
    }
  if (__y != __z) {          // relink y in place of z.  y is z's successor
    __z->_M_left->_M_parent = __y; 
    __y->_M_left = __z->_M_left;
    if (__y != __z->_M_right) {
      __x_parent = __y->_M_parent;
      if (__x) __x->_M_parent = __y->_M_parent;
      __y->_M_parent->_M_left = __x;      // __y must be a child of _M_left
      __y->_M_right = __z->_M_right;
      __z->_M_right->_M_parent = __y;
    }
    else
      __x_parent = __y;  
    if (__root == __z)
      __root = __y;
    else if (__z->_M_parent->_M_left == __z)
      __z->_M_parent->_M_left = __y;
    else 
      __z->_M_parent->_M_right = __y;
    __y->_M_parent = __z->_M_parent;
    __STLPORT_STD::swap(__y->_M_color, __z->_M_color);
    __y = __z;
    // __y now points to node to be actually deleted
  }
  else {                        // __y == __z
    __x_parent = __y->_M_parent;
    if (__x) __x->_M_parent = __y->_M_parent;   
    if (__root == __z)
      __root = __x;
    else 
      if (__z->_M_parent->_M_left == __z)
        __z->_M_parent->_M_left = __x;
      else
        __z->_M_parent->_M_right = __x;
    if (__leftmost == __z) 
      if (__z->_M_right == 0)        // __z->_M_left must be null also
        __leftmost = __z->_M_parent;
    // makes __leftmost == _M_header if __z == __root
      else
        __leftmost = _Rb_tree_node_base::_S_minimum(__x);
    if (__rightmost == __z)  
      if (__z->_M_left == 0)         // __z->_M_right must be null also
        __rightmost = __z->_M_parent;  
    // makes __rightmost == _M_header if __z == __root
      else                      // __x == __z->_M_left
        __rightmost = _Rb_tree_node_base::_S_maximum(__x);
  }
  if (__y->_M_color != _S_rb_tree_red) { 
    while (__x != __root && (__x == 0 || __x->_M_color == _S_rb_tree_black))
      if (__x == __x_parent->_M_left) {
        _Rb_tree_node_base* __w = __x_parent->_M_right;
        if (__w->_M_color == _S_rb_tree_red) {
          __w->_M_color = _S_rb_tree_black;
          __x_parent->_M_color = _S_rb_tree_red;
          _Rb_tree_rotate_left(__x_parent, __root);
          __w = __x_parent->_M_right;
        }
        if ((__w->_M_left == 0 || 
             __w->_M_left->_M_color == _S_rb_tree_black) &&
            (__w->_M_right == 0 || 
             __w->_M_right->_M_color == _S_rb_tree_black)) {
          __w->_M_color = _S_rb_tree_red;
          __x = __x_parent;
          __x_parent = __x_parent->_M_parent;
        } else {
          if (__w->_M_right == 0 || 
              __w->_M_right->_M_color == _S_rb_tree_black) {
            if (__w->_M_left) __w->_M_left->_M_color = _S_rb_tree_black;
            __w->_M_color = _S_rb_tree_red;
            _Rb_tree_rotate_right(__w, __root);
            __w = __x_parent->_M_right;
          }
          __w->_M_color = __x_parent->_M_color;
          __x_parent->_M_color = _S_rb_tree_black;
          if (__w->_M_right) __w->_M_right->_M_color = _S_rb_tree_black;
          _Rb_tree_rotate_left(__x_parent, __root);
          break;
        }
      } else {                  // same as above, with _M_right <-> _M_left.
        _Rb_tree_node_base* __w = __x_parent->_M_left;
        if (__w->_M_color == _S_rb_tree_red) {
          __w->_M_color = _S_rb_tree_black;
          __x_parent->_M_color = _S_rb_tree_red;
          _Rb_tree_rotate_right(__x_parent, __root);
          __w = __x_parent->_M_left;
        }
        if ((__w->_M_right == 0 || 
             __w->_M_right->_M_color == _S_rb_tree_black) &&
            (__w->_M_left == 0 || 
             __w->_M_left->_M_color == _S_rb_tree_black)) {
          __w->_M_color = _S_rb_tree_red;
          __x = __x_parent;
          __x_parent = __x_parent->_M_parent;
        } else {
          if (__w->_M_left == 0 || 
              __w->_M_left->_M_color == _S_rb_tree_black) {
            if (__w->_M_right) __w->_M_right->_M_color = _S_rb_tree_black;
            __w->_M_color = _S_rb_tree_red;
            _Rb_tree_rotate_left(__w, __root);
            __w = __x_parent->_M_left;
          }
          __w->_M_color = __x_parent->_M_color;
          __x_parent->_M_color = _S_rb_tree_black;
          if (__w->_M_left) __w->_M_left->_M_color = _S_rb_tree_black;
          _Rb_tree_rotate_right(__x_parent, __root);
          break;
        }
      }
    if (__x) __x->_M_color = _S_rb_tree_black;
  }
  return __y;
}

template <class _Dummy>
void
_Rb_global<_Dummy>::_M_decrement(_Rb_tree_base_iterator* __it)
{
  _Base_ptr _M_node = __it->_M_node;
  __stl_verbose_assert(__it->_Valid(), _StlMsg_INVALID_ITERATOR); 
  __stl_verbose_assert(_M_node!=__it->_Owner_node()->_M_left, _StlMsg_INVALID_ADVANCE); 
  if (_M_node->_M_color == _S_rb_tree_red &&
      _M_node->_M_parent->_M_parent == _M_node)
    _M_node = _M_node->_M_right;
  else if (_M_node->_M_left != 0) {
    _Base_ptr __y = _M_node->_M_left;
    while (__y->_M_right != 0)
      __y = __y->_M_right;
    _M_node = __y;
  }
  else {
    _Base_ptr __y = _M_node->_M_parent;
    while (_M_node == __y->_M_left) {
      _M_node = __y;
      __y = __y->_M_parent;
    }
    _M_node = __y;
  }
  __it->_M_node = _M_node;
}

template <class _Dummy>
void
_Rb_global<_Dummy>::_M_increment(_Rb_tree_base_iterator* __it)
{
  _Base_ptr _M_node = __it->_M_node;
  __stl_verbose_assert(__it->_Valid(), _StlMsg_INVALID_ITERATOR); 
  __stl_verbose_assert(_M_node!=__it->_Owner_node(), _StlMsg_INVALID_ADVANCE);
  if (_M_node->_M_right != 0) {
    _M_node = _M_node->_M_right;
    while (_M_node->_M_left != 0)
      _M_node = _M_node->_M_left;
  }
  else {
    _Base_ptr __y = _M_node->_M_parent;
    while (_M_node == __y->_M_right) {
      _M_node = __y;
      __y = __y->_M_parent;
    }
    if (_M_node->_M_right != __y)
      _M_node = __y;
  }
  __it->_M_node = _M_node;
}

template <class _Key, class _Value, class _KeyOfValue, 
          class _Compare, class _Alloc>
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& 
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
  ::operator=(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x)
{
  if (this != &__x) {
                                // Note that _Key may be a constant type.
    clear();
    _M_node_count = 0;
    _M_key_compare = __x._M_key_compare;        
    if (__x._M_root() == 0) {
      _M_root() = 0;
      _M_leftmost() = _M_header._M_data;
      _M_rightmost() = _M_header._M_data;
    }
    else {
      _M_root() = _M_copy(__x._M_root(), _M_header._M_data);
      _M_leftmost() = _S_minimum(_M_root());
      _M_rightmost() = _S_maximum(_M_root());
      _M_node_count = __x._M_node_count;
    }
  }
  return *this;
}

template <class _Key, class _Value, class _KeyOfValue, 
          class _Compare, class _Alloc>
__iterator__ 
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
  ::_M_insert(__Base_ptr__ __x_, __Base_ptr__ __y_, const __Value__& __v)
{
  _Link_type __x = (_Link_type) __x_;
  _Link_type __y = (_Link_type) __y_;
  _Link_type __z;

  if (__y == _M_header._M_data || __x != 0 || 
      _M_key_compare(_KeyOfValue()(__v), _S_key(__y))) {
    __z = _M_create_node(__v);
    _S_left(__y) = __z;               // also makes _M_leftmost() = __z 
                                      //    when __y == _M_header
    if (__y == _M_header._M_data) {
      _M_root() = __z;
      _M_rightmost() = __z;
    }
    else if (__y == _M_leftmost())
      _M_leftmost() = __z;   // maintain _M_leftmost() pointing to min node
  }
  else {
    __z = _M_create_node(__v);
    _S_right(__y) = __z;
    if (__y == _M_rightmost())
      _M_rightmost() = __z;  // maintain _M_rightmost() pointing to max node
  }
  _S_parent(__z) = __y;
  _S_left(__z) = 0;
  _S_right(__z) = 0;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -