⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 libmp3dec.c

📁 the author is LiFeng
💻 C
📖 第 1 页 / 共 5 页
字号:
/*
* This source code is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
* Lesser General Public License for more details.
*       
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
*
* File Name: libmp3dec.c							
*
* Reference:
*
* Author: Li Feng,  fli_linux@yahoo.com.cn                                                 
*
* Description:
*
* 	
* 
* History:
* 02/23/2005  Li Feng    Created
*  
*
*CodeReview Log:
* 
*/

#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "typedef.h"
#include "libmp3dec.h"
#include "mp3dec.h"
#include "mp3dectab.h"
#include "bits.h"
#include "vlc.h"

static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);

/* vlc structure for decoding layer 3 huffman tables */
static VLC huff_vlc[16]; 
static uint8_t *huff_code_table[16];
static VLC huff_quad_vlc[2];
/* computed from band_size_long */
static uint16_t band_index_long[9][23];
/* XXX: free when all decoders are closed */
#define TABLE_4_3_SIZE (8191 + 16)
static int8_t  *table_4_3_exp;
#if FRAC_BITS <= 15
static uint16_t *table_4_3_value;
#else
static uint32_t *table_4_3_value;
#endif
/* intensity stereo coef table */
static int32_t is_table[2][16];
static int32_t is_table_lsf[2][2][16];
static int32_t csa_table[8][4];
static float csa_table_float[8][4];
static int32_t mdct_win[8][36];

/* lower 2 bits: modulo 3, higher bits: shift */
static uint16_t scale_factor_modshift[64];
/* [i][j]:  2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
static int32_t scale_factor_mult[15][3];
/* mult table for layer 2 group quantization */

#define SCALE_GEN(v) \
{ FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }

static int32_t scale_factor_mult2[3][3] = {
    SCALE_GEN(4.0 / 3.0), /* 3 steps */
    SCALE_GEN(4.0 / 5.0), /* 5 steps */
    SCALE_GEN(4.0 / 9.0), /* 9 steps */
};

/* 2^(n/4) */
static uint32_t scale_factor_mult3[4] = 
{
    FIXR(1.0),
    FIXR(1.18920711500272106671),
    FIXR(1.41421356237309504880),
    FIXR(1.68179283050742908605),
};

static MPA_INT window[512];
    
/* layer 1 unscaling */
/* n = number of bits of the mantissa minus 1 */
static int l1_unscale(int n, int mant, int scale_factor)
{
    int shift, mod;
    int64_t val;

    shift = scale_factor_modshift[scale_factor];
    mod = shift & 3;
    shift >>= 2;
    val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
    shift += n;
    /* NOTE: at this point, 1 <= shift >= 21 + 15 */
    return (int)((val + (1L << (shift - 1))) >> shift);
}

static int l2_unscale_group(int steps, int mant, int scale_factor)
{
    int shift, mod, val;

    shift = scale_factor_modshift[scale_factor];
    mod = shift & 3;
    shift >>= 2;

    val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
    /* NOTE: at this point, 0 <= shift <= 21 */
    if (shift > 0)
        val = (val + (1 << (shift - 1))) >> shift;
    return val;
}

/* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
static int l3_unscale(int value, int exponent)
{
#if FRAC_BITS <= 15    
    unsigned int m;
#else
    uint64_t m;
#endif
    int e;

    e = table_4_3_exp[value];
    e += (exponent >> 2);
    e = FRAC_BITS - e;
#if FRAC_BITS <= 15    
    if (e > 31)
        e = 31;
#endif
    m = table_4_3_value[value];
#if FRAC_BITS <= 15    
    m = (m * scale_factor_mult3[exponent & 3]);
    m = (m + (1 << (e-1))) >> e;
    return m;
#else
    m = MUL64(m, scale_factor_mult3[exponent & 3]);
    m = (m + (uint64_t_C(1) << (e-1))) >> e;
    return m;
#endif
}

/* all integer n^(4/3) computation code */
#define DEV_ORDER 13

#define POW_FRAC_BITS 24
#define POW_FRAC_ONE    (1 << POW_FRAC_BITS)
#define POW_FIX(a)   ((int)((a) * POW_FRAC_ONE))
#define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)

static int dev_4_3_coefs[DEV_ORDER];

static int pow_mult3[3] = {
    POW_FIX(1.0),
    POW_FIX(1.25992104989487316476),
    POW_FIX(1.58740105196819947474),
};

static void int_pow_init(void)
{
    int i, a;

    a = POW_FIX(1.0);
    for(i=0;i<DEV_ORDER;i++) {
        a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
        dev_4_3_coefs[i] = a;
    }
}

/* return the mantissa and the binary exponent */
static int int_pow(int i, int *exp_ptr)
{
    int e, er, eq, j;
    int a, a1;
    
    /* renormalize */
    a = i;
    e = POW_FRAC_BITS;
    while (a < (1 << (POW_FRAC_BITS - 1))) {
        a = a << 1;
        e--;
    }
    a -= (1 << POW_FRAC_BITS);
    a1 = 0;
    for(j = DEV_ORDER - 1; j >= 0; j--)
        a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
    a = (1 << POW_FRAC_BITS) + a1;
    /* exponent compute (exact) */
    e = e * 4;
    er = e % 3;
    eq = e / 3;
    a = POW_MULL(a, pow_mult3[er]);
    while (a >= 2 * POW_FRAC_ONE) {
        a = a >> 1;
        eq++;
    }
    /* convert to float */
    while (a < POW_FRAC_ONE) {
        a = a << 1;
        eq--;
    }
    /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
#if POW_FRAC_BITS > FRAC_BITS
    a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
    /* correct overflow */
    if (a >= 2 * (1 << FRAC_BITS)) {
        a = a >> 1;
        eq++;
    }
#endif
    *exp_ptr = eq;
    return a;
}

/* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */

/* cos(i*pi/64) */

#define COS0_0  FIXR(0.50060299823519630134)
#define COS0_1  FIXR(0.50547095989754365998)
#define COS0_2  FIXR(0.51544730992262454697)
#define COS0_3  FIXR(0.53104259108978417447)
#define COS0_4  FIXR(0.55310389603444452782)
#define COS0_5  FIXR(0.58293496820613387367)
#define COS0_6  FIXR(0.62250412303566481615)
#define COS0_7  FIXR(0.67480834145500574602)
#define COS0_8  FIXR(0.74453627100229844977)
#define COS0_9  FIXR(0.83934964541552703873)
#define COS0_10 FIXR(0.97256823786196069369)
#define COS0_11 FIXR(1.16943993343288495515)
#define COS0_12 FIXR(1.48416461631416627724)
#define COS0_13 FIXR(2.05778100995341155085)
#define COS0_14 FIXR(3.40760841846871878570)
#define COS0_15 FIXR(10.19000812354805681150)

#define COS1_0 FIXR(0.50241928618815570551)
#define COS1_1 FIXR(0.52249861493968888062)
#define COS1_2 FIXR(0.56694403481635770368)
#define COS1_3 FIXR(0.64682178335999012954)
#define COS1_4 FIXR(0.78815462345125022473)
#define COS1_5 FIXR(1.06067768599034747134)
#define COS1_6 FIXR(1.72244709823833392782)
#define COS1_7 FIXR(5.10114861868916385802)

#define COS2_0 FIXR(0.50979557910415916894)
#define COS2_1 FIXR(0.60134488693504528054)
#define COS2_2 FIXR(0.89997622313641570463)
#define COS2_3 FIXR(2.56291544774150617881)

#define COS3_0 FIXR(0.54119610014619698439)
#define COS3_1 FIXR(1.30656296487637652785)

#define COS4_0 FIXR(0.70710678118654752439)

/* butterfly operator */
#define BF(a, b, c)\
{\
    tmp0 = tab[a] + tab[b];\
    tmp1 = tab[a] - tab[b];\
    tab[a] = tmp0;\
    tab[b] = MULL(tmp1, c);\
}

#define BF1(a, b, c, d)\
{\
    BF(a, b, COS4_0);\
    BF(c, d, -COS4_0);\
    tab[c] += tab[d];\
}

#define BF2(a, b, c, d)\
{\
    BF(a, b, COS4_0);\
    BF(c, d, -COS4_0);\
    tab[c] += tab[d];\
    tab[a] += tab[c];\
    tab[c] += tab[b];\
    tab[b] += tab[d];\
}

#define ADD(a, b) tab[a] += tab[b]

/* DCT32 without 1/sqrt(2) coef zero scaling. */
static void dct32(int32_t *out, int32_t *tab)
{
    int tmp0, tmp1;

    /* pass 1 */
    BF(0, 31, COS0_0);
    BF(1, 30, COS0_1);
    BF(2, 29, COS0_2);
    BF(3, 28, COS0_3);
    BF(4, 27, COS0_4);
    BF(5, 26, COS0_5);
    BF(6, 25, COS0_6);
    BF(7, 24, COS0_7);
    BF(8, 23, COS0_8);
    BF(9, 22, COS0_9);
    BF(10, 21, COS0_10);
    BF(11, 20, COS0_11);
    BF(12, 19, COS0_12);
    BF(13, 18, COS0_13);
    BF(14, 17, COS0_14);
    BF(15, 16, COS0_15);

    /* pass 2 */
    BF(0, 15, COS1_0);
    BF(1, 14, COS1_1);
    BF(2, 13, COS1_2);
    BF(3, 12, COS1_3);
    BF(4, 11, COS1_4);
    BF(5, 10, COS1_5);
    BF(6,  9, COS1_6);
    BF(7,  8, COS1_7);
    
    BF(16, 31, -COS1_0);
    BF(17, 30, -COS1_1);
    BF(18, 29, -COS1_2);
    BF(19, 28, -COS1_3);
    BF(20, 27, -COS1_4);
    BF(21, 26, -COS1_5);
    BF(22, 25, -COS1_6);
    BF(23, 24, -COS1_7);
    
    /* pass 3 */
    BF(0, 7, COS2_0);
    BF(1, 6, COS2_1);
    BF(2, 5, COS2_2);
    BF(3, 4, COS2_3);
    
    BF(8, 15, -COS2_0);
    BF(9, 14, -COS2_1);
    BF(10, 13, -COS2_2);
    BF(11, 12, -COS2_3);
    
    BF(16, 23, COS2_0);
    BF(17, 22, COS2_1);
    BF(18, 21, COS2_2);
    BF(19, 20, COS2_3);
    
    BF(24, 31, -COS2_0);
    BF(25, 30, -COS2_1);
    BF(26, 29, -COS2_2);
    BF(27, 28, -COS2_3);

    /* pass 4 */
    BF(0, 3, COS3_0);
    BF(1, 2, COS3_1);
    
    BF(4, 7, -COS3_0);
    BF(5, 6, -COS3_1);
    
    BF(8, 11, COS3_0);
    BF(9, 10, COS3_1);
    
    BF(12, 15, -COS3_0);
    BF(13, 14, -COS3_1);
    
    BF(16, 19, COS3_0);
    BF(17, 18, COS3_1);
    
    BF(20, 23, -COS3_0);
    BF(21, 22, -COS3_1);
    
    BF(24, 27, COS3_0);
    BF(25, 26, COS3_1);
    
    BF(28, 31, -COS3_0);
    BF(29, 30, -COS3_1);
    
    /* pass 5 */
    BF1(0, 1, 2, 3);
    BF2(4, 5, 6, 7);
    BF1(8, 9, 10, 11);
    BF2(12, 13, 14, 15);
    BF1(16, 17, 18, 19);
    BF2(20, 21, 22, 23);
    BF1(24, 25, 26, 27);
    BF2(28, 29, 30, 31);
    
    /* pass 6 */
    
    ADD( 8, 12);
    ADD(12, 10);
    ADD(10, 14);
    ADD(14,  9);
    ADD( 9, 13);
    ADD(13, 11);
    ADD(11, 15);

    out[ 0] = tab[0];
    out[16] = tab[1];
    out[ 8] = tab[2];
    out[24] = tab[3];
    out[ 4] = tab[4];
    out[20] = tab[5];
    out[12] = tab[6];
    out[28] = tab[7];
    out[ 2] = tab[8];
    out[18] = tab[9];
    out[10] = tab[10];
    out[26] = tab[11];
    out[ 6] = tab[12];
    out[22] = tab[13];
    out[14] = tab[14];
    out[30] = tab[15];
    
    ADD(24, 28);
    ADD(28, 26);
    ADD(26, 30);
    ADD(30, 25);
    ADD(25, 29);
    ADD(29, 27);
    ADD(27, 31);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -