📄 newtonpf.m
字号:
function [V, converged, i] = newtonpf(Ybus, Sbus, V0, ref, pv, pq, mpopt)
%NEWTONPF Solves the power flow using a full Newton's method.
% [V, converged, i] = newtonpf(Ybus, Sbus, V0, ref, pv, pq, mpopt)
% solves for bus voltages given the full system admittance matrix (for
% all buses), the complex bus power injection vector (for all buses),
% the initial vector of complex bus voltages, and column vectors with
% the lists of bus indices for the swing bus, PV buses, and PQ buses,
% respectively. The bus voltage vector contains the set point for
% generator (including ref bus) buses, and the reference angle of the
% swing bus, as well as an initial guess for remaining magnitudes and
% angles. mpopt is a MATPOWER options vector which can be used to
% set the termination tolerance, maximum number of iterations, and
% output options (see 'help mpoption' for details). Uses default
% options if this parameter is not given. Returns the final complex
% voltages, a flag which indicates whether it converged or not, and
% the number of iterations performed.
% MATPOWER Version 2.0
% by Ray Zimmerman, PSERC Cornell 12/24/97
% Copyright (c) 1996, 1997 by Power System Engineering Research Center (PSERC)
% See http://www.pserc.cornell.edu/ for more info.
%% default arguments
if nargin < 7
mpopt = mpoption;
end
%% options
tol = mpopt(2);
max_it = mpopt(3);
verbose = mpopt(31);
%% initialize
j = sqrt(-1);
converged = 0;
i = 0;
V = V0;
Va = angle(V);
Vm = abs(V);
%% set up indexing for updating V
npv = length(pv);
npq = length(pq);
j1 = 1; j2 = npv; %% j1:j2 - V angle of pv buses
j3 = j2 + 1; j4 = j2 + npq; %% j3:j4 - V angle of pq buses
j5 = j4 + 1; j6 = j4 + npq; %% j5:j6 - V mag of pq buses
%% evaluate F(x0)
mis = V .* conj(Ybus * V) - Sbus;
F = [ real(mis([pv; pq]));
imag(mis(pq)) ];
%% check tolerance
normF = norm(F, inf);
if verbose > 1
fprintf('\n it max P & Q mismatch (p.u.)');
fprintf('\n---- ---------------------------');
fprintf('\n%3d %10.3e', i, normF);
end
if normF < tol
converged = 1;
if verbose > 1
fprintf('\nConverged!\n');
end
end
%% do Newton iterations
while (~converged & i < max_it)
%% update iteration counter
i = i + 1;
%% evaluate Jacobian
[dSbus_dVm, dSbus_dVa] = dSbus_dV(Ybus, V);
%% selecting a subset of rows of a large sparse matrix is very slow
%% in Matlab 5 (but not Matlab 4 ... go figure), but selecting a
%% subset of the columns is fast, and so is transposing, so instead
%% of doing this ...
% j11 = real(dSbus_dVa([pv; pq], [pv; pq]));
% j12 = real(dSbus_dVm([pv; pq], pq));
% j21 = imag(dSbus_dVa(pq, [pv; pq]));
% j22 = imag(dSbus_dVm(pq, pq));
%% ... we do the equivalent thing using
%% a temporary matrix and transposing
temp = real(dSbus_dVa(:, [pv; pq]))';
j11 = temp(:, [pv; pq])';
temp = real(dSbus_dVm(:, pq))';
j12 = temp(:, [pv; pq])';
temp = imag(dSbus_dVa(:, [pv; pq]))';
j21 = temp(:, pq)';
temp = imag(dSbus_dVm(:, pq))';
j22 = temp(:, pq)';
J = [ j11 j12;
j21 j22; ];
%% compute update step
dx = -(J \ F);
%% update voltage
Va(pv) = Va(pv) + dx(j1:j2);
Va(pq) = Va(pq) + dx(j3:j4);
Vm(pq) = Vm(pq) + dx(j5:j6);
V = Vm .* exp(j * Va);
%% evalute F(x)
mis = V .* conj(Ybus * V) - Sbus;
F = [ real(mis(pv));
real(mis(pq));
imag(mis(pq)) ];
%% check for convergence
normF = norm(F, inf);
if verbose > 1
fprintf('\n%3d %10.3e', i, normF);
end
if normF < tol
converged = 1;
if verbose
fprintf('\nNewton''s method power flow converged in %d iterations.\n', i);
end
end
end
if verbose
if ~converged
fprintf('\nNewton''s method power did not converge in %d iterations.\n', i);
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -