⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cryptlib.h

📁 网络通信安全与数据加密 RC6算法的实现
💻 H
📖 第 1 页 / 共 2 页
字号:
	virtual unsigned int Decrypt(const byte *cipherText, unsigned int cipherTextLength, byte *plainText) =0;
};

/// abstract base class for encryptors and decryptors with fixed length ciphertext

/** A simplified interface (as embodied in this
	class and its subclasses) is provided for crypto systems (such
	as RSA) whose ciphertext length depend only on the key, not on the length
	of the plaintext.  The maximum plaintext length also depend only on
	the key.
*/
class PK_FixedLengthCryptoSystem : public virtual PK_CryptoSystem
{
public:
	///
	virtual unsigned int MaxPlainTextLength() const =0;
	///
	virtual unsigned int CipherTextLength() const =0;

	unsigned int MaxPlainTextLength(unsigned int cipherTextLength) const;
	unsigned int CipherTextLength(unsigned int plainTextLength) const;
};

/// abstract base class for encryptors with fixed length ciphertext

class PK_FixedLengthEncryptor : public virtual PK_Encryptor, public virtual PK_FixedLengthCryptoSystem
{
};

/// abstract base class for decryptors with fixed length ciphertext

class PK_FixedLengthDecryptor : public virtual PK_Decryptor, public virtual PK_FixedLengthCryptoSystem
{
public:
	/// decrypt a byte string, and return the length of plaintext
	/** Preconditions:
			\begin{itemize} 
			\item length of cipherText == CipherTextLength()
			\item size of plainText == MaxPlainTextLength()
			\end{itemize}
		
		The function returns the actual length of the plaintext, or 0
		if decryption fails.
	*/
	virtual unsigned int Decrypt(const byte *cipherText, byte *plainText) =0;

	unsigned int Decrypt(const byte *cipherText, unsigned int cipherTextLength, byte *plainText);
};

/// abstract base class for public-key signers and verifiers

/** This class provides an interface common to signers and verifiers
	for querying their signature lengths and maximum message lengths.

	The maximum message length is typically very low (less than 1000)
	because it is intended that only message digests (see \Ref{HashModule})
	should be signed.
*/
class PK_SignatureSystem
{
public:
	///
	virtual ~PK_SignatureSystem() {};

	/// signature length support by this object (as either input or output)
	virtual unsigned int SignatureLength() const =0;

	/// create a new HashModule to accumulate the message to be signed or verified
	virtual HashModule * NewMessageAccumulator() const =0;
};

/// abstract base class for public-key signers

/** A signer is also a private signature key.  It contains both the
	key and the algorithm to perform the signature.
*/
class PK_Signer : public virtual PK_SignatureSystem
{
public:
	/// key too short exception, may be thrown by Sign() or SignMessage()
	class KeyTooShort : public Exception 
	{
	public: 
		KeyTooShort() : Exception("PK_Signer: key too short") {}
	};

	/// sign and delete messageAccumulator
	/** Preconditions:
			\begin{itemize} 
			\item messageAccumulator was obtained by calling NewMessageAccumulator()
			\item HashModule::Final() has not been called on messageAccumulator
			\item size of signature == SignatureLength()
			\end{itemize}
	*/
	virtual void Sign(RandomNumberGenerator &rng, HashModule *messageAccumulator, byte *signature) const =0;

	/// sign a message
	/** Precondition: size of signature == SignatureLength() */
	virtual void SignMessage(RandomNumberGenerator &rng, const byte *message, unsigned int messageLen, byte *signature) const;
};

/// abstract base class for public-key verifiers

/** A verifier is also a public verification key.  It contains both the
	key and the algorithm to perform the verification.
*/
class PK_Verifier : public virtual PK_SignatureSystem
{
public:
	/// check whether sig is a valid signature for messageAccumulator, and delete messageAccumulator
	/** Preconditions:
			\begin{itemize} 
			\item messageAccumulator was obtained by calling NewMessageAccumulator()
			\item HashModule::Final() has not been called on messageAccumulator
			\item length of signature == SignatureLength()
			\end{itemize}
	*/
	virtual bool Verify(HashModule *messageAccumulator, const byte *sig) const =0;

	/// check whether sig is a valid signature for message
	/** Precondition: size of signature == SignatureLength() */
	virtual bool VerifyMessage(const byte *message, unsigned int messageLen, const byte *sig) const;
};

/// abstract base class for public-key signers and verifiers with recovery

/** In a signature scheme with recovery, a verifier is able to extract
	a message from its valid signature.
*/
class PK_SignatureSystemWithRecovery : public virtual PK_SignatureSystem
{
public:
	/// length of longest message that can be fully recovered
	virtual unsigned int MaximumRecoverableLength() const =0;

	/// whether or not messages longer than MaximumRecoverableLength() can be signed
	/** If this function returns false, any message longer than
		MaximumRecoverableLength() will be truncated for signature
		and will fail verification.
	*/
	virtual bool AllowLeftoverMessage() const =0;
};

/// abstract base class for public-key signers with recovery

class PK_SignerWithRecovery : public virtual PK_SignatureSystemWithRecovery, public PK_Signer
{
};

/// abstract base class for public-key verifiers with recovery

/** A PK_VerifierWithRecovery can also be used the same way as a PK_Verifier,
	where the signature and the entire message is given to Verify() or
	VerifyMessage() as input.
*/
class PK_VerifierWithRecovery : public virtual PK_SignatureSystemWithRecovery, public PK_Verifier
{
public:
	/// create a new HashModule to accumulate leftover message
	virtual HashModule * NewLeftoverMessageAccumulator(const byte *signature) const =0;

	/// partially recover a message from its signature, return length of recoverd message, or 0 if signature is invalid
	/** Preconditions:
			\begin{itemize} 
			\item leftoverMessageAccumulator was obtained by calling NewLeftoverMessageAccumulator(signature)
			\item HashModule::Final() has not been called on leftoverMessageAccumulator
			\item length of signature == SignatureLength()
			\item size of recoveredMessage == MaximumRecoverableLength()
			\end{itemize}
	*/
	virtual unsigned int PartialRecover(HashModule *leftoverMessageAccumulator, byte *recoveredMessage) const =0;

	/// recover a message from its signature, return length of message, or 0 if signature is invalid
	/** This function should be equivalent to PartialRecover(NewLeftoverMessageAccumulator(signature), recoveredMessage).
		Preconditions:
			\begin{itemize} 
			\item length of signature == SignatureLength()
			\item size of recoveredMessage == MaximumRecoverableLength()
			\end{itemize}
	*/
	virtual unsigned int Recover(const byte *signature, byte *recoveredMessage) const =0;
};

/// abstract base class for domains of simple key agreement protocols

/** A key agreement domain is a set of parameters that must be shared
	by two parties in a key agreement protocol, along with the algorithms
	for generating key pairs and deriving agreed values.
*/
class PK_SimpleKeyAgreementDomain
{
public:
	virtual ~PK_SimpleKeyAgreementDomain() {}

	/// return whether the domain parameters stored in this object are valid
	virtual bool ValidateDomainParameters(RandomNumberGenerator &rng) const =0;
	/// return length of agreed value produced
	virtual unsigned int AgreedValueLength() const =0;
	/// return length of private keys in this domain
	virtual unsigned int PrivateKeyLength() const =0;
	/// return length of public keys in this domain
	virtual unsigned int PublicKeyLength() const =0;
	/// generate private/public key pair
	/** Preconditions:
			\begin{itemize} 
			\item size of privateKey == PrivateKeyLength()
			\item size of publicKey == PublicKeyLength()
			\end{itemize}
	*/
	virtual void GenerateKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const =0;
	/// derive agreed value from your private key and couterparty's public key, return false in case of failure
	/** Note: If you have previously validated the public key, use validateOtherPublicKey=false to save time.
	/** Preconditions:
			\begin{itemize} 
			\item size of agreedValue == AgreedValueLength()
			\item length of privateKey == PrivateKeyLength()
			\item length of otherPublicKey == PublicKeyLength()
			\end{itemize}
	*/
	virtual bool Agree(byte *agreedValue, const byte *privateKey, const byte *otherPublicKey, bool validateOtherPublicKey=true) const =0;
};

/// abstract base class for domains of authenticated key agreement protocols

/** In an authenticated key agreement protocol, each party has two
	key pairs. The long-lived key pair is called the static key pair,
	and the short-lived key pair is called the ephemeral key pair.
*/
class PK_AuthenticatedKeyAgreementDomain
{
public:
	virtual ~PK_AuthenticatedKeyAgreementDomain() {}

	/// return whether the domain parameters stored in this object are valid
	virtual bool ValidateDomainParameters(RandomNumberGenerator &rng) const =0;
	/// return length of agreed value produced
	virtual unsigned int AgreedValueLength() const =0;

	/// return length of static private keys in this domain
	virtual unsigned int StaticPrivateKeyLength() const =0;
	/// return length of static public keys in this domain
	virtual unsigned int StaticPublicKeyLength() const =0;
	/// generate static private/public key pair
	/** Preconditions:
			\begin{itemize} 
			\item size of privateKey == StaticPrivateKeyLength()
			\item size of publicKey == StaticPublicKeyLength()
			\end{itemize}
	*/
	virtual void GenerateStaticKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const =0;

	/// return length of ephemeral private keys in this domain
	virtual unsigned int EphemeralPrivateKeyLength() const =0;
	/// return length of ephemeral public keys in this domain
	virtual unsigned int EphemeralPublicKeyLength() const =0;
	/// generate ephemeral private/public key pair
	/** Preconditions:
			\begin{itemize} 
			\item size of privateKey == EphemeralPrivateKeyLength()
			\item size of publicKey == EphemeralPublicKeyLength()
			\end{itemize}
	*/
	virtual void GenerateEphemeralKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const =0;

	/// derive agreed value from your private keys and couterparty's public keys, return false in case of failure
	/** Note: The ephemeral public key will always be validated.
		If you have previously validated the static public key, use validateStaticOtherPublicKey=false to save time.
		Preconditions:
			\begin{itemize} 
			\item size of agreedValue == AgreedValueLength()
			\item length of staticPrivateKey == StaticPrivateKeyLength()
			\item length of ephemeralPrivateKey == EphemeralPrivateKeyLength()
			\item length of staticOtherPublicKey == StaticPublicKeyLength()
			\item length of ephemeralOtherPublicKey == EphemeralPublicKeyLength()
			\end{itemize}
	*/
	virtual bool Agree(byte *agreedValue,
		const byte *staticPrivateKey, const byte *ephemeralPrivateKey, 
		const byte *staticOtherPublicKey, const byte *ephemeralOtherPublicKey,
		bool validateStaticOtherPublicKey=true) const =0;
};

/// abstract base class for all objects that support precomputation

/** The class defines a common interface for doing precomputation,
	and loading and saving precomputation.
*/
class PK_Precomputation
{
public:
	///
	virtual ~PK_Precomputation() {}

	///
	/** The exact semantics of Precompute() is varies, but
		typically it means calculate a table of n objects
		that can be used later to speed up computation.
	*/
	virtual void Precompute(unsigned int n) =0;

	/// retrieve previously saved precomputation
	virtual void LoadPrecomputation(BufferedTransformation &storedPrecomputation) =0;
	/// save precomputation for later use
	virtual void SavePrecomputation(BufferedTransformation &storedPrecomputation) const =0;
};

///
template <class T> class PK_WithPrecomputation : public virtual T, public virtual PK_Precomputation
{
};

NAMESPACE_END

#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -