📄 mv-search.c
字号:
break;
}
}
else
{
i = (x0&0x7) + (x0>7) * 64 + y_offset;
for(k=0, j=y0; j<BLOCK_SIZE + y0; j++, k+=BLOCK_SIZE)
memcpy(&(c_diff[i + ((j&0x7)<<3)]), &diff[k], BLOCK_SIZE*sizeof(int));
}
}
}
if(test8x8transform)
mcost += find_SATD (c_diff, blocktype);
if (mcost < min_mcost)
{
min_mcost = mcost;
best_pos = pos;
}
}
if (best_pos)
{
*mv_x += (spiral_hpel_search_x [best_pos]);
*mv_y += (spiral_hpel_search_y [best_pos]);
}
if (input->hadamard == 2)
min_mcost = INT_MAX;
test8x8transform = input->Transform8x8Mode && blocktype <= 4 && input->hadamard;
/************************************
***** *****
***** QUARTER-PEL REFINEMENT *****
***** *****
************************************/
//===== set function for getting pixel values =====
if ((pic4_pix_x + *mv_x > 0) && (pic4_pix_x + *mv_x < max_pos_x4) &&
(pic4_pix_y + *mv_y > 0) && (pic4_pix_y + *mv_y < max_pos_y4) )
{
get_line = FastLine4X;
}
else
{
get_line = UMVLine4X;
}
//===== loop over search positions =====
for (best_pos = 0, pos = qpelstart; pos < search_pos4; pos++)
{
cand_mv_x = *mv_x + spiral_search_x[pos]; // quarter-pel units
cand_mv_y = *mv_y + spiral_search_y[pos]; // quarter-pel units
//----- set motion vector cost -----
mcost = MV_COST (lambda_factor, 0, cand_mv_x, cand_mv_y, pred_mv_x, pred_mv_y);
if (mcost >= min_mcost) continue;
cmv_x = cand_mv_x + pic4_pix_x;
cmv_y = cand_mv_y + pic4_pix_y;
//----- add up SATD -----
for (y0=0, abort_search=0; y0<blocksize_y && !abort_search; y0+=4)
{
y_offset = (y0>7)*ypels;
ry0 = (y0<<2) + cmv_y;
ry4 = ry0 + 4;
ry8 = ry4 + 4;
ry12 = ry8 + 4;
y1 = y0 + 1;
y2 = y1 + 1;
y3 = y2 + 1;
for (x0=0; x0<blocksize_x; x0+=BLOCK_SIZE)
{
rx0 = (x0<<2) + cmv_x;
d = diff;
orig_line = &orig_pic [y0][x0];
ref_line = get_line (ref_pic, ry0, rx0, img_height, img_width);
*d++ = *orig_line++ - *(ref_line );
*d++ = *orig_line++ - *(ref_line += 4);
*d++ = *orig_line++ - *(ref_line += 4);
*d++ = *orig_line - *(ref_line += 4);
orig_line = &orig_pic [y1][x0];
ref_line = get_line (ref_pic, ry4, rx0, img_height, img_width);
*d++ = *orig_line++ - *(ref_line );
*d++ = *orig_line++ - *(ref_line += 4);
*d++ = *orig_line++ - *(ref_line += 4);
*d++ = *orig_line - *(ref_line += 4);
orig_line = &orig_pic [y2][x0];
ref_line = get_line (ref_pic, ry8, rx0, img_height, img_width);
*d++ = *orig_line++ - *(ref_line );
*d++ = *orig_line++ - *(ref_line += 4);
*d++ = *orig_line++ - *(ref_line += 4);
*d++ = *orig_line - *(ref_line += 4);
orig_line = &orig_pic [y3][x0];
ref_line = get_line (ref_pic, ry12, rx0, img_height, img_width);
*d++ = *orig_line++ - *(ref_line );
*d++ = *orig_line++ - *(ref_line += 4);
*d++ = *orig_line++ - *(ref_line += 4);
*d = *orig_line - *(ref_line += 4);
if (!test8x8transform)
{
if ((mcost += SATD (diff, input->hadamard)) > min_mcost)
{
abort_search = 1;
break;
}
}
else
{
i = (x0&0x7) + (x0>7) * 64 + y_offset;
for(k=0, j=y0; j<y0 + BLOCK_SIZE; j++, k+=BLOCK_SIZE)
memcpy(&(c_diff[i + ((j&0x7)<<3)]), &diff[k], BLOCK_SIZE*sizeof(int));
}
}
}
if(test8x8transform)
mcost += find_SATD (c_diff, blocktype);
if (mcost < min_mcost)
{
min_mcost = mcost;
best_pos = pos;
}
}
if (best_pos)
{
*mv_x += spiral_search_x [best_pos];
*mv_y += spiral_search_y [best_pos];
}
//===== return minimum motion cost =====
return min_mcost;
}
/*!
***********************************************************************
* \brief
* Full pixel block motion search
***********************************************************************
*/
int // ==> minimum motion cost after search
FullPelBlockMotionBiPred (pel_t** orig_pic, // <-- original pixel values for the AxB block
short ref, // <-- reference frame (0... or -1 (backward))
int list,
int pic_pix_x, // <-- absolute x-coordinate of regarded AxB block
int pic_pix_y, // <-- absolute y-coordinate of regarded AxB block
int blocktype, // <-- block type (1-16x16 ... 7-4x4)
short pred_mv_x1, // <-- motion vector predictor (x) in sub-pel units
short pred_mv_y1, // <-- motion vector predictor (y) in sub-pel units
short pred_mv_x2, // <-- motion vector predictor (x) in sub-pel units
short pred_mv_y2, // <-- motion vector predictor (y) in sub-pel units
short* mv_x, // <--> in: search center (x) / out: motion vector (x) - in pel units
short* mv_y, // <--> in: search center (y) / out: motion vector (y) - in pel units
short* s_mv_x, // <--> in: search center (x) / out: motion vector (x) - in pel units
short* s_mv_y, // <--> in: search center (y) / out: motion vector (y) - in pel units
int search_range, // <-- 1-d search range in pel units
int min_mcost, // <-- minimum motion cost (cost for center or huge value)
int lambda_factor) // <-- lagrangian parameter for determining motion cost
{
int pos, cand_x, cand_y, y, x4, mcost;
pel_t *orig_line, *ref2_line, *ref1_line;
pel_t *(*get_ref_line1)(int, pel_t*, int, int, int, int);
pel_t *(*get_ref_line2)(int, pel_t*, int, int, int, int);
int list_offset = img->mb_data[img->current_mb_nr].list_offset;
pel_t *ref1_pic = listX[list + list_offset ][ref]->imgY_11;
pel_t *ref2_pic = listX[list ==0? 1 + list_offset: list_offset][ 0 ]->imgY_11;
int img_width = listX[list+list_offset ][ref]->size_x;
int img_height = listX[list+list_offset ][ref]->size_y;
int best_pos = 0; // position with minimum motion cost
int max_pos = (2*search_range+1)*(2*search_range+1); // number of search positions
int blocksize_y = input->blc_size[blocktype][1]; // vertical block size
int blocksize_x = input->blc_size[blocktype][0]; // horizontal block size
int blocksize_x4 = blocksize_x >> 2; // horizontal block size in 4-pel units
int pred_x1 = (pic_pix_x << 2) + pred_mv_x1; // predicted position x (in sub-pel units)
int pred_y1 = (pic_pix_y << 2) + pred_mv_y1; // predicted position y (in sub-pel units)
int pred_x2 = (pic_pix_x << 2) + pred_mv_x2; // predicted position x (in sub-pel units)
int pred_y2 = (pic_pix_y << 2) + pred_mv_y2; // predicted position y (in sub-pel units)
short center_x = pic_pix_x + *mv_x; // center position x (in pel units)
short center_y = pic_pix_y + *mv_y; // center position y (in pel units)
short ref1_center_x = pic_pix_x + *s_mv_x; // mvx of second pred (in pel units)
short ref1_center_y = pic_pix_y + *s_mv_y; // mvy of second pred (in pel units)
int bi_diff;
short apply_weights = (active_pps->weighted_bipred_idc>0);
short weightSpic = (apply_weights ? (list == 0? wbp_weight[list_offset ][ref][0 ][0]: wbp_weight[list_offset + 1][0 ][ref][0]) : 1<<luma_log_weight_denom);
short weightRpic = (apply_weights ? (list == 0? wbp_weight[list_offset + 1][ref][0 ][0]: wbp_weight[list_offset ][0 ][ref][0]) : 1<<luma_log_weight_denom);
short offsetSpic = (apply_weights ? (list == 0? wp_offset[list_offset ][ref] [0]: wp_offset[list_offset + 1][0 ] [0]) : 0);
short offsetRpic = (apply_weights ? (list == 0? wp_offset[list_offset + 1][ref] [0]: wp_offset[list_offset ][0 ] [0]) : 0);
short weightedpel,pixel1,pixel2;
short offsetBi=(offsetRpic + offsetSpic + 1)>>1;
//===== set function for getting reference picture lines =====
if ((center_x > search_range) && (center_x < img_width -1-search_range-blocksize_x) &&
(center_y > search_range) && (center_y < img_height-1-search_range-blocksize_y) )
{
get_ref_line2 = FastLineX;
}
else
{
get_ref_line2 = UMVLineX;
}
//===== set function for getting reference picture lines =====
if ((ref1_center_x > search_range) && (ref1_center_x < img_width -1-search_range-blocksize_x) &&
(ref1_center_y > search_range) && (ref1_center_y < img_height-1-search_range-blocksize_y) )
{
get_ref_line1 = FastLineX;
}
else
{
get_ref_line1 = UMVLineX;
}
//===== loop over all search positions =====
for (pos=0; pos<max_pos; pos++)
{
//--- set candidate position (absolute position in pel units) ---
cand_x = center_x + spiral_search_x[pos];
cand_y = center_y + spiral_search_y[pos];
//--- initialize motion cost (cost for motion vector) and check ---
mcost = MV_COST (lambda_factor, 2, ref1_center_x, ref1_center_y, pred_x1, pred_y1);
mcost += MV_COST (lambda_factor, 2, cand_x, cand_y, pred_x2, pred_y2);
if (mcost >= min_mcost) continue;
//--- add residual cost to motion cost ---
if (apply_weights)
{
for (y=0; y<blocksize_y; y++)
{
ref2_line = get_ref_line2 (blocksize_x, ref2_pic, cand_y+y, cand_x, img_height, img_width);
ref1_line = get_ref_line1 (blocksize_x, ref1_pic, ref1_center_y+y, ref1_center_x, img_height, img_width);
orig_line = orig_pic [y];
for (x4=0; x4<blocksize_x4; x4++)
{
pixel1=weightSpic * (*ref1_line++);
pixel2=weightRpic * (*ref2_line++);
weightedpel = Clip3 (0, img->max_imgpel_value ,((pixel1 + pixel2 +
2 * wp_luma_round) >> (luma_log_weight_denom + 1)) + (offsetBi));
bi_diff = (*orig_line++) - weightedpel;
mcost += byte_abs[bi_diff];
pixel1=weightSpic * (*ref1_line++);
pixel2=weightRpic * (*ref2_line++);
weightedpel = Clip3 (0, img->max_imgpel_value ,((pixel1 + pixel2 +
2 * wp_luma_round) >> (luma_log_weight_denom + 1)) + (offsetBi));
bi_diff = (*orig_line++) - weightedpel;
mcost += byte_abs[bi_diff];
pixel1=weightSpic * (*ref1_line++);
pixel2=weightRpic * (*ref2_line++);
weightedpel = Clip3 (0, img->max_imgpel_value ,((pixel1 + pixel2 +
2 * wp_luma_round) >> (luma_log_weight_denom + 1)) + (offsetBi));
bi_diff = (*orig_line++) - weightedpel;
mcost += byte_abs[bi_diff];
pixel1=weightSpic * (*ref1_line++);
pixel2=weightRpic * (*ref2_line++);
weightedpel = Clip3 (0, img->max_imgpel_value ,((pixel1 + pixel2 +
2 * wp_luma_round) >> (luma_log_weight_denom + 1)) + (offsetBi));
bi_diff = (*orig_line++) - weightedpel;
mcost += byte_abs[bi_diff];
}
if (mcost >= min_mcost)
{
break;
}
}
}
else
{
for (y=0; y<blocksize_y; y++)
{
ref2_line = get_ref_line2 (blocksize_x, ref2_pic, cand_y+y, cand_x, img_height, img_width);
ref1_line = get_ref_line1 (blocksize_x, ref1_pic, ref1_center_y+y, ref1_center_x, img_height, img_width);
orig_line = orig_pic [y];
for (x4=0; x4<blocksize_x4; x4++)
{
bi_diff = (*orig_line++) - (((*ref1_line++) + *ref2_line++)>>1) ;
mcost += byte_abs[bi_diff];
bi_diff = (*orig_line++) - (((*ref1_line++) + *ref2_line++)>>1) ;
mcost += byte_abs[bi_diff];
bi_diff = (*orig_line++) - (((*ref1_line++) + *ref2_line++)>>1) ;
mcost += byte_abs[bi_diff];
bi_diff = (*orig_line++) - (((*ref1_line++) + *ref2_line++)>>1) ;
mcost += byte_abs[bi_diff];
}
if (mcost >= min_mcost)
{
break;
}
}
}
//--- check if motion cost is less than minimum cost ---
if (mcost < min_mcost)
{
best_pos = pos;
min_mcost = mcost;
}
}
//===== set best motion vector and return minimum motion cost =====
if (best_pos)
{
*mv_x += spiral_search_x[best_pos];
*mv_y += spiral_search_y[best_pos];
}
return min_mcost;
}
/*!
***********************************************************************
* \brief
* Sub pixel block motion search
***********************************************************************
*/
int // ==> minimum motion cost after search
SubPelBlockSearchBiPred (pel_t** orig_pic, // <-- original pixel values for the AxB block
short ref, // <-- reference frame (0... or -1 (backward))
int list, // <-- reference picture list
int pic_pix_x, // <-- absolute x-coordinate of regarded AxB block
int pic_pix_y, // <-- absolute y-coordinate of regarded AxB block
int blocktype, // <-- block type (1-16x16 ... 7-4x4)
short pred_mv_x, // <-- motion vector predictor (x) in sub-pel units
short pred_mv_y, // <-- motion vector predictor (y) in sub-pel units
short* mv_x, // <--> in: search center (x) / out: motion vector (x) - in pel units
short* mv_y, // <--> in: search center (y) / out: motion vector (y) - in pel units
short* s_
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -