📄 boltzmann.ps
字号:
V0 XN427.5 321.73 438.75 319.27 2 L7 XV0 XN7 X90 450 2.25 2.45 416.25 292.27 G0 X90 450 2.25 2.45 416.25 292.27 A416.25 302.09 416.25 294.73 2 L7 XV0 XN420.75 314.36 439.41 317.54 2 L7 XV0 XN443.25 319.27 465.75 314.36 2 L7 XV0 XN440.34 296.46 445.5 304.55 2 L7 XV0 XN436.5 307 443.25 307 2 L7 XV0 XN447.75 307 465.75 307 2 L7 XV0 XN447.75 307 465.75 314.36 2 L7 XV0 XN418.5 292.27 436.5 294.73 2 L7 XV0 XN441 294.73 465.75 307 2 L7 XV0 XN420.09 312.63 432 307 2 L7 XV0 XN441 316.82 443.91 308.74 2 L7 XV0 XN231.75 280 285.75 334 R7 XV0 XN384.65 315.19 396.65 315.08 386.42 308.82 386.7 312.33 4 YV366.75 307 386.7 312.33 2 LN384.46 310.31 396 307 384.46 303.69 385.67 307 4 YV366.75 307 385.67 307 2 LN385.95 304.57 395.99 298 384 298.25 386.12 301.05 4 YV366.75 307 386.13 301.05 2 LN211.56 312.79 231.75 307 211.56 301.21 213.67 307 4 YV204.75 307 213.67 307 2 L3 HN312.75 280 366.75 334 R7 XV0.5 H0 XN0 10 Q(Feature) 321.75 316 T(Detection) 321.75 306 T(Pre) 240.75 316 T(Processing) 240.75 306 T(Raw) 177.43 309.18 T(Input) 174.65 300.17 T0 0 612 792 C202.5 127 445.5 199 C281.25 175.83 288 181.58 288 173.92 281.25 168.17 4 Y3 X0 KV0.5 H2 Z0 XN274.5 162.42 281.25 168.17 281.25 160.5 274.5 154.75 4 Y3 XV0 XN267.75 149 274.5 154.75 274.5 147.08 267.75 141.33 4 Y3 XV0 XN274.5 177.75 281.25 183.5 281.25 175.83 274.5 170.08 4 Y7 XV0 XN267.75 141.33 274.5 147.08 274.5 139.42 267.75 133.67 4 Y7 XV0 XN267.75 164.33 274.5 170.08 274.5 162.42 267.75 156.67 4 Y7 XV0 XN267.75 156.67 274.5 162.42 274.5 154.75 267.75 149 4 Y7 XV0 XN274.5 154.75 281.25 160.5 281.25 152.83 274.5 147.08 4 Y7 XV0 XN274.5 147.08 281.25 152.83 281.25 145.17 274.5 139.42 4 Y7 XV0 XN281.25 160.5 288 166.25 288 158.58 281.25 152.83 4 Y7 XV0 XN281.25 168.17 288 173.92 288 166.25 281.25 160.5 4 Y7 XV0 XN281.25 183.5 288 189.25 288 181.58 281.25 175.83 4 Y7 XV0 XN281.25 152.83 288 158.58 288 150.92 281.25 145.17 4 Y7 XV0 XN274.5 170.08 281.25 175.83 281.25 168.17 274.5 162.42 4 Y7 XV0 XN288 189.25 294.75 195 294.75 187.33 288 181.58 4 Y7 XV0 XN288 173.92 294.75 179.67 294.75 172 288 166.25 4 Y7 XV0 XN288 166.25 294.75 172 294.75 164.33 288 158.58 4 Y7 XV0 XN288 158.58 294.75 164.33 294.75 156.67 288 150.92 4 Y7 XV0 XN267.75 172 274.5 177.75 274.5 170.08 267.75 164.33 4 Y7 XV0 XN288 181.58 294.75 187.33 294.75 179.67 288 173.92 4 Y7 XV0 XN261 150.92 267.75 156.67 267.75 149 261 143.25 4 Y7 XV0 XN261 158.58 267.75 164.33 267.75 156.67 261 150.92 4 Y7 XV0 XN261 166.25 267.75 172 267.75 164.33 261 158.58 4 Y7 XV0 XN261 135.58 267.75 141.33 267.75 133.67 261 127.91 4 Y7 XV0 XN261 143.25 267.75 149 267.75 141.33 261 135.58 4 Y7 XV0 XN90 450 1.12 0.96 271.12 155.71 G90 450 1.12 0.96 271.12 155.71 A90 450 1.12 0.96 277.88 169.13 G90 450 1.12 0.96 277.88 169.13 A90 450 1.12 0.96 284.62 159.54 G90 450 1.12 0.96 284.62 159.54 A90 450 1.12 0.96 277.88 153.79 G90 450 1.12 0.96 277.88 153.79 A90 450 1.12 0.96 284.62 174.88 G90 450 1.12 0.96 284.62 174.88 A90 450 1.12 0.96 277.88 161.46 G90 450 1.12 0.96 277.88 161.46 A90 450 1.12 0.96 271.12 148.04 G90 450 1.12 0.96 271.12 148.04 A90 450 1.12 0.96 271.12 163.38 G90 450 1.12 0.96 271.12 163.38 A90 450 1.12 0.96 284.62 167.21 G90 450 1.12 0.96 284.62 167.21 A306 133.67 375.75 175.83 RN7 X90 450 2.25 1.92 306 147.08 G0 X90 450 2.25 1.92 306 147.08 A7 X90 450 2.25 1.92 306 154.75 G0 X90 450 2.25 1.92 306 154.75 A7 X90 450 2.25 1.92 306 162.42 G0 X90 450 2.25 1.92 306 162.42 A90 450 2.25 1.92 342 154.75 A90 450 2.25 1.92 348.75 164.33 A90 450 2.25 1.92 333 166.25 A90 450 2.25 1.92 333 147.08 A90 450 2.25 1.92 324 152.83 A90 450 2.25 1.92 326.25 160.5 A90 450 2.25 1.92 346.5 145.17 A90 450 2.25 1.92 353.25 154.75 A7 X90 450 2.25 1.92 375.75 160.5 G0 X90 450 2.25 1.92 375.75 160.5 A7 X90 450 2.25 1.92 375.75 154.75 G0 X90 450 2.25 1.92 375.75 154.75 A308.25 162.42 330.75 166.25 2 LN308.25 154.75 321.75 152.83 2 LN308.25 162.42 324 160.5 2 LN308.25 147.08 322.41 151.48 2 LN326.25 158.58 333 149 2 LN334.59 148.44 340.41 153.4 2 LN335.25 147.08 344.25 145.17 2 LN325.59 151.48 331.41 148.44 2 LN335.25 166.25 346.5 164.33 2 LN90 450 2.25 1.92 324 143.25 A324 150.92 324 145.17 2 LN328.5 160.5 347.16 162.98 2 LN351 164.33 373.5 160.5 2 LN348.09 146.52 353.25 152.83 2 LN344.25 154.75 351 154.75 2 LN355.5 154.75 373.5 154.75 2 LN355.5 154.75 373.5 160.5 2 LN326.25 143.25 344.25 145.17 2 LN348.75 145.17 373.5 154.75 2 LN327.84 159.15 339.75 154.75 2 LN348.75 162.42 351.66 156.11 2 LN271.12 148.04 M 281.25 133.67 281.25 133.67 288 133.67 D 294.75 133.67 294.75 133.67 295.88 140.38 D 297 147.08 297 147.08 303.75 147.08 DN271.12 163.38 M 272.25 183.5 272.25 183.5 279 186.38 D 285.75 189.25 285.75 189.25 291.38 182.54 D 297 175.83 297 175.83 297 169.12 D 297 162.42 297 162.42 303.75 162.42 DN271.12 155.71 M 283.5 141.33 283.5 141.33 288 146.12 D 292.5 150.92 292.5 150.92 294.75 152.83 D 297 154.75 297 154.75 303.75 154.75 DN0 10 Q(Feature) 382.5 161.17 T(Output) 382.5 152.18 T0 0 612 792 CFMENDPAGE%%EndPage: "3" 2%%Page: "2" 2612 792 0 FMBEGINPAGE108 54 540 54 2 L0.25 H2 Z0 X0 KN0 8 Q(Boltzmann Machines) 108 42.62 T(December 6, 1993) 294.58 42.62 T(2) 536 42.62 T1 10 Q(FIGURE 1. An arti\336cial neur) 263.08 599.08 T(on) 388.11 599.08 T1 14 Q(4.1 T) 108 568.42 T(opology) 140.53 568.42 T0 12 Q-0.31 (The topology for a Boltzmann machine is unlike that of older network con\336gurations such) 108 541.75 P(as the Perceptron and Selfridge\325) 108 527.75 T(s Pandemonium which are typically \322layered\323 to some) 261.22 527.75 T(extent. The Boltzmann topology has much more freedom and may have many layers,) 108 513.75 T(interconnections between layers, and loops which ultimately feed back on themselves.) 108 499.75 T(Hence, a Boltzmann net has a basic) 108 485.75 T2 F(feedback) 281.2 485.75 T0 F( topology) 323.82 485.75 T0 10 Q(1) 369.47 490.55 T0 12 Q(.) 374.47 485.75 T1 16 Q(5.0 Action) 108 445.08 T0 12 Q(Like the Hop\336eld network, the Boltzmann network seeks a state with the lowest ener) 108 417.75 T(gy) 515.5 417.75 T(.) 526.71 417.75 T-0.1 (Each unit decides, based on the connections between it and the surrounding units whether) 108 403.75 P-0.31 (it should be on or of) 108 389.75 P-0.31 (f. When the sum of the weights from incoming active units is positive,) 203.19 389.75 P(then the unit is active, otherwise it is inactive. W) 108 375.75 T(ith the Boltzmann network, the unit will) 341.7 375.75 T(not be) 108 361.75 T2 F(guaranteed) 140.65 361.75 T0 F(to turn on depending on the degree of thermal noise. Eventually) 198.27 361.75 T(, the) 503.61 361.75 T(entire net will reach a stable) 108 347.75 T2 F(equilibrium) 245.89 347.75 T0 F( state. The probability of the unit is speci\336ed by) 301.86 347.75 T(the probability function:) 108 333.75 T0 10 Q(\050EQ 1\051) 512.53 301.38 T0 12 Q(where) 108 260.75 T2 F(T) 140.3 260.75 T0 F( is the level of thermal noise, and) 146.97 260.75 T2 F(E) 309.19 260.75 T0 F( is the sum of the active connection weights.) 316.52 260.75 T1 14 Q(5.1 Learning) 108 227.42 T0 12 Q(The procedure used to train a Boltzmann machine consists of two phases. The idea is to) 108 200.75 T(\322teach\323 the network the relationships between the input and the output.) 108 186.75 T1 11 Q(Phase I) 108 161.42 T3 12 Q(\245) 108 141.75 T0 F(Clamp a binary feature vector onto the inputs.) 121.75 141.75 T3 F(\245) 108 121.75 T0 F(Clamp the desired binary output vector to the output.) 121.75 121.75 T108 90 540 110 C108 98 240 98 2 L0.25 H2 Z0 X0 KN0 0 612 792 C0 10 Q0 X0 K-0.11 (1. The other type of basic topology is the) 108 83.33 P2 F-0.11 (feed-forwar) 275.92 83.33 P-0.11 (d) 322.74 83.33 P0 F-0.11 ( which includes neural network models such as back-) 327.74 83.33 P(propagation and the neocognitron.) 108 71.33 T180 619.75 468 708 C7 X0 K90 450 13.5 13.5 319.8 669.94 G1 H2 Z0 X90 450 13.5 13.5 319.8 669.94 A294.77 673.25 306.3 669.95 294.77 666.64 295.97 669.95 4 YV279 669.95 295.97 669.95 2 L0.5 HN296.42 665.1 307.95 661.8 296.42 658.49 297.62 661.8 4 Y2 XV282 661.8 297.62 661.8 2 LN296.96 681.81 308.5 678.5 296.96 675.19 298.17 678.5 4 Y4 XV281.5 678.5 298.17 678.5 2 LN317.1 670.84 320.7 670.84 2 L0 XN0 7 Q(Inputs from other neurons) 293.71 697.41 T(Threshold function) 315.29 631.12 T(W) 240.61 639.67 T(eighted) 246.65 639.67 T(Connections) 237.59 634.54 T278.63 658.92 285.91 660 280.31 655.23 280.14 657.38 4 YV280.15 657.4 280.15 657.38 2 LVN(Output) 370.8 675.81 T(\050active/inactive\051) 359.04 669.19 T326.1 678.04 M 318.9 678.04 318.9 678.04 318.9 670.84 D 318.9 663.65 318.9 663.65 311.7 663.65 D1 HN342.46 673.25 354 669.95 342.46 666.64 343.67 669.95 4 YV333.3 669.95 343.67 669.95 2 L0.5 HN308.31 683.21 302.12 681.63 306.53 686.25 306.87 684.4 4 YV306.88 684.38 306.88 684.4 2 L0 ZN325.25 695 306.25 684 2 LN256.9 646.6 279.95 657 2 LVN325.11 655.93 321.62 663.88 328.79 658.98 326.4 658.13 4 YV326.4 658.12 326.38 658.12 2 LN323.62 661.12 342.62 638.12 2 LN0 0 612 792 C261.88 280.75 358.65 317.75 C2 12 Q0 X0 K(p) 264.63 301.38 T0 F(1) 318.2 308.57 T(1) 290.21 289.19 T2 F(e) 308.79 289.19 T4 9 Q(D) 324.79 295.82 T2 F(E) 330.81 295.82 T4 F(\050) 320.9 295.82 T(\051) 336.7 295.82 T2 F(T) 347.19 295.82 T4 F(\244) 343.44 295.82 T(-) 314.12 295.82 T4 12 Q(+) 299.21 289.19 T(=) 276.63 301.38 T290.21 303.97 351.94 303.97 2 L0.33 H0 ZN0 0 612 792 CFMENDPAGE%%EndPage: "2" 1%%Page: "1" 1612 792 0 FMBEGINPAGE108 54 540 54 2 L0.25 H2 Z0 X0 KN0 8 Q(Boltzmann Machines) 108 42.62 T(December 6, 1993) 294.58 42.62 T(1) 536 42.62 T0 24 Q(Boltzmann Machines) 230.73 704 T1 12 Q(By Paul Schermerhorn) 274.03 664 T(CPSC 599.14 Pr) 258.15 648 T(esentation #4) 340.89 648 T0 10 Q(\322A presentation about Boltzmann Machines and their application to Cursive Script recognition.\323) 140.35 621.33 T1 16 Q(1.0 Motivation) 117 581.33 T0 12 Q(Figuring out what the dif) 117 554 T(ferences and similarities in handwriting is still an unsolved prob-) 236.72 554 T(lem. Determining precisely what qualities determine \324a-ness\325 in script \324a\325) 117 540 T(s are typically) 467.41 540 T(simple tasks for human experts, yet we have insuf) 117 526 T(\336cient access to our own knowledge) 356.28 526 T(base to precisely state the rules for determining \324a-ness\325. What we want is to be able to) 117 512 T(have the computer \336gure these rules out for) 117 498 T2 F(itself) 328.84 498 T0 F(.) 352.17 498 T1 16 Q(2.0 The Hop\336eld Network) 117 457.33 T0 12 Q(In 1982, J.J. Hop\336eld came up with a type of network which minimizes) 117 430 T2 F(ener) 463.44 430 T(gy) 484.31 430 T0 F(. This) 494.85 430 T(model is fully deterministic, and used a simple algorithm to stabilize the network to) 117 416 T-0.11 (regions of local minima. However) 117 402 P-0.11 (, we desire) 280.31 402 P2 F-0.11 (global) 334.61 402 P0 F-0.11 ( minima, not local minima, and this is) 365.27 402 P(not available with the Hop\336eld model.) 117 388 T1 16 Q(3.0 The Boltzmann Machine) 117 347.33 T0 12 Q-0.22 (The Boltzmann Machine which was developed at CMU by Ackley) 117 320 P-0.22 (, Hinton and Sejnowski) 434.3 320 P(in 1985, is an extension of the ideas proposed in the Hop\336eld net. T) 117 306 T(riggered by a discov-) 441.37 306 T(ery of Scott Kirkpatrick in 1983, the Boltzmann machine uses an analogue of thermal) 117 292 T-0.09 (noise which is gradually reduced. This is similar to the process of slowly cooling metal to) 117 278 P(strengthen it, hence the term \322simulated annealing.\323 Depending on the amount of noise) 117 264 T(present in the network, each unit will have a certain probability of being active. This is) 117 250 T(supposed to get around the local minimum problem present in the Hop\336eld model.) 117 236 T1 16 Q(4.0 The Neur) 117 195.33 T(on) 209.99 195.33 T0 12 Q-0.49 (Hop\336eld and Boltzmann networks are comprised of individual neurons or \322units\323 as some,) 117 168 P(perhaps rightly) 117 154 T(, prefer to call them. All of the neurons are the same, and have the follow-) 188.51 154 T(ing qualities.) 117 140 T3 F(\245) 117 120 T0 F(Connection weights between two units are symmetrical.) 130.74 120 T3 F(\245) 117 100 T0 F(Each element activates depending on its input conditions.) 130.74 100 T3 F(\245) 117 80 T0 F(They make asynchronous decisions.) 130.74 80 TFMENDPAGE%%EndPage: "1" 0%%Trailer%%BoundingBox: 0 0 612 792%%Pages: 4 -1%%DocumentFonts: Times-Roman%%+ Times-Bold%%+ Times-Italic%%+ Courier-Bold%%+ Symbol
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -