📄 hal-vectors-and-vsrs.html
字号:
<!-- Copyright (C) 2003 Red Hat, Inc. -->
<!-- This material may be distributed only subject to the terms -->
<!-- and conditions set forth in the Open Publication License, v1.0 -->
<!-- or later (the latest version is presently available at -->
<!-- http://www.opencontent.org/openpub/). -->
<!-- Distribution of the work or derivative of the work in any -->
<!-- standard (paper) book form is prohibited unless prior -->
<!-- permission is obtained from the copyright holder. -->
<HTML
><HEAD
><TITLE
>Vectors and VSRs</TITLE
><meta name="MSSmartTagsPreventParsing" content="TRUE">
<META
NAME="GENERATOR"
CONTENT="Modular DocBook HTML Stylesheet Version 1.76b+
"><LINK
REL="HOME"
TITLE="eCos Reference Manual"
HREF="ecos-ref.html"><LINK
REL="UP"
TITLE="Exception Handling"
HREF="hal-exception-handling.html"><LINK
REL="PREVIOUS"
TITLE="Exception Handling"
HREF="hal-exception-handling.html"><LINK
REL="NEXT"
TITLE="Default Synchronous Exception Handling"
HREF="hal-default-synchronous-exception-handling.html"></HEAD
><BODY
CLASS="SECTION"
BGCOLOR="#FFFFFF"
TEXT="#000000"
LINK="#0000FF"
VLINK="#840084"
ALINK="#0000FF"
><DIV
CLASS="NAVHEADER"
><TABLE
SUMMARY="Header navigation table"
WIDTH="100%"
BORDER="0"
CELLPADDING="0"
CELLSPACING="0"
><TR
><TH
COLSPAN="3"
ALIGN="center"
>eCos Reference Manual</TH
></TR
><TR
><TD
WIDTH="10%"
ALIGN="left"
VALIGN="bottom"
><A
HREF="hal-exception-handling.html"
ACCESSKEY="P"
>Prev</A
></TD
><TD
WIDTH="80%"
ALIGN="center"
VALIGN="bottom"
>Chapter 10. Exception Handling</TD
><TD
WIDTH="10%"
ALIGN="right"
VALIGN="bottom"
><A
HREF="hal-default-synchronous-exception-handling.html"
ACCESSKEY="N"
>Next</A
></TD
></TR
></TABLE
><HR
ALIGN="LEFT"
WIDTH="100%"></DIV
><DIV
CLASS="SECTION"
><H1
CLASS="SECTION"
><A
NAME="HAL-VECTORS-AND-VSRS">Vectors and VSRs</H1
><P
>The CPU delivers all exceptions, whether
synchronous faults or asynchronous interrupts, to a set of hardware
defined vectors. Depending on the architecture, these may be
implemented in a number of different ways. Examples of existing
mechanisms are:</P
><P
></P
><DIV
CLASS="VARIABLELIST"
><DL
><DT
>PowerPC</DT
><DD
><P
> Exceptions are vectored to locations 256 bytes apart starting at
either zero or <TT
CLASS="LITERAL"
>0xFFF00000</TT
>. There are 16 such
vectors defined by the basic architecture and extra vectors may
be defined by specific variants. One of the base vectors is for
all external interrupts, and another is for the architecture
defined timer.
</P
></DD
><DT
>MIPS</DT
><DD
><P
> Most exceptions and all interrupts are vectored to a single
address at either <TT
CLASS="LITERAL"
>0x80000000</TT
> or
<TT
CLASS="LITERAL"
>0xBFC00180</TT
>. Software is responsible for
reading the exception code from the CPU <TT
CLASS="LITERAL"
>cause</TT
>
register to discover its true source. Some TLB and debug
exceptions are delivered to different vector addresses, but
these are not used currently by eCos. One of the exception codes
in the <TT
CLASS="LITERAL"
>cause</TT
> register indicates an external
interrupt. Additional bits in the <TT
CLASS="LITERAL"
>cause</TT
>
register provide a first-level decode for the interrupt source,
one of which represents an architecture defined timer.
</P
></DD
><DT
>IA32</DT
><DD
><P
> Exceptions are delivered via an Interrupt Descriptor Table (IDT)
which is essentially an indirection table indexed by exception
number. The IDT may be placed anywhere in memory. In PC hardware
the standard interrupt controller can be programmed to deliver
the external interrupts to a block of 16 vectors at any offset
in the IDT. There is no hardware supplied mechanism for
determining the vector taken, other than from the address jumped
to.
</P
></DD
><DT
>ARM</DT
><DD
><P
> All exceptions, including the FIQ and IRQ interrupts, are
vectored to locations four bytes apart starting at zero. There
is only room for one instruction here, which must immediately
jump out to handling code higher in memory. Interrupt sources
have to be decoded entirely from the interrupt controller.
</P
></DD
></DL
></DIV
><P
>With such a wide variety of hardware approaches, it is not possible to
provide a generic mechanism for the substitution of exception vectors
directly. Therefore, eCos translates all of these mechanisms in to a
common approach that can be used by portable code on all platforms.</P
><P
>The mechanism implemented is to attach to each hardware vector a short
piece of trampoline code that makes an indirect jump via a table to
the actual handler for the exception. This handler is called the
Vector Service Routine (VSR) and the table is called the VSR table.</P
><P
>The trampoline code performs the absolute minimum processing necessary
to identify the exception source, and jump to the VSR. The VSR is then
responsible for saving the CPU state and taking the necessary actions
to handle the exception or interrupt. The entry conditions for the VSR
are as close to the raw hardware exception entry state as possible -
although on some platforms the trampoline will have had to move or
reorganize some registers to do its job.</P
><P
>To make this more concrete, consider how the trampoline code operates
in each of the architectures described above:</P
><P
></P
><DIV
CLASS="VARIABLELIST"
><DL
><DT
>PowerPC</DT
><DD
><P
> A separate trampoline is contained in each of the vector
locations. This code saves a few work registers away to the
special purposes registers available, loads the exception number
into a register and then uses that to index the VSR table and
jump to the VSR. The VSR is entered with some registers move to
the SPRs, and one of the data register containing the number of
the vector taken.
</P
></DD
><DT
>MIPS</DT
><DD
><P
> A single trampoline routine attached to the common vector reads
the exception code out of the <TT
CLASS="LITERAL"
>cause</TT
> register
and uses that value to index the VSR table and jump to the VSR.
The trampoline uses the two registers defined in the ABI for
kernel use to do this, one of these will contain the exception
vector number for the VSR.
</P
></DD
><DT
>IA32</DT
><DD
><P
> There is a separate 3 or 4 instruction trampoline pointed to by
each active IDT table entry. The trampoline for exceptions that
also have an error code pop it from the stack and put it into a
memory location. Trampolines for non-error-code exceptions just
zero the memory location. Then all trampolines push an
interrupt/exception number onto the stack, and take an indirect
jump through a precalculated offset in the VSR table. This is
all done without saving any registers, using memory-only
operations. The VSR is entered with the vector number pushed
onto the stack on top of the standard hardware saved state.
</P
></DD
><DT
>ARM</DT
><DD
><P
> The trampoline consists solely of the single instruction at the
exception entry point. This is an indirect jump via a location
32 bytes higher in memory. These locations, from
<TT
CLASS="LITERAL"
>0x20</TT
> up, form the VSR table. Since each VSR
is entered in a different CPU mode
(<TT
CLASS="LITERAL"
>SVC,UNDEF,ABORT,IRQ or FIQ</TT
>) there has to be a
different VSR for each exception that knows how to save the CPU
state correctly.
</P
></DD
></DL
></DIV
></DIV
><DIV
CLASS="NAVFOOTER"
><HR
ALIGN="LEFT"
WIDTH="100%"><TABLE
SUMMARY="Footer navigation table"
WIDTH="100%"
BORDER="0"
CELLPADDING="0"
CELLSPACING="0"
><TR
><TD
WIDTH="33%"
ALIGN="left"
VALIGN="top"
><A
HREF="hal-exception-handling.html"
ACCESSKEY="P"
>Prev</A
></TD
><TD
WIDTH="34%"
ALIGN="center"
VALIGN="top"
><A
HREF="ecos-ref.html"
ACCESSKEY="H"
>Home</A
></TD
><TD
WIDTH="33%"
ALIGN="right"
VALIGN="top"
><A
HREF="hal-default-synchronous-exception-handling.html"
ACCESSKEY="N"
>Next</A
></TD
></TR
><TR
><TD
WIDTH="33%"
ALIGN="left"
VALIGN="top"
>Exception Handling</TD
><TD
WIDTH="34%"
ALIGN="center"
VALIGN="top"
><A
HREF="hal-exception-handling.html"
ACCESSKEY="U"
>Up</A
></TD
><TD
WIDTH="33%"
ALIGN="right"
VALIGN="top"
>Default Synchronous Exception Handling</TD
></TR
></TABLE
></DIV
></BODY
></HTML
>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -