📄 umc_h264_dec_reconstruct_mb.cpp
字号:
pMV = pMVBwd; } else { pRefIndex = pRefIndexL0 + (xpos>>2) + (ypos>>2)*4; RefIndexL0 = *pRefIndex; VM_ASSERT(RefIndexL0 >= 0 && RefIndexL0 < (Ipp8s)m_CurSliceHeader.num_ref_idx_l0_active); pRefYPlane = pRefPicList0[RefIndexL0]->m_pYPlane; pRefVPlane = pRefPicList0[RefIndexL0]->m_pVPlane; pRefUPlane = pRefPicList0[RefIndexL0]->m_pUPlane; ref_pic_struct = pRefPicList0[RefIndexL0]->m_PictureStructureForDec; VM_ASSERT(pRefYPlane); VM_ASSERT(pRefVPlane); VM_ASSERT(pRefUPlane); pMV = pMVFwd; } // set pointers for this subblock pMV_sb = pMV + (xpos>>2) + (ypos>>2)*4; mvx = pMV_sb->mvx; mvy = pMV_sb->mvy; offsetToBlock = xpos + ypos*pitch; pDstY_sb = pDstY + offsetToBlock; pRefY_sb = pRefYPlane + offsetToBlock; pDstV_sb = pDstV + (offsetToBlock>>1); pRefV_sb = pRefVPlane + (offsetToBlock>>1); pDstU_sb = pDstU + (offsetToBlock>>1); pRefU_sb = pRefUPlane + (offsetToBlock>>1); if (i > 0) { // advance Dst ptrs to next MB position, used as temp store // for backward prediction. This is always OK because the Dst // buffer is padded at the edges. pDstY_sb += 16; pDstV_sb += 8; pDstU_sb += 8; } xh = mvx & (INTERP_FACTOR-1); yh = mvy & (INTERP_FACTOR-1); Ipp8u pred_method=SelectPredictionMethod( mbYOffset+ypos, mvy, sbheight, height); // See comment above about clipping & xh,yh. mvx = MIN(mvx, (width - ((Ipp32s)mbXOffset + xpos + sbwidth - 1 - D_MV_CLIP_LIMIT))*INTERP_FACTOR); mvx = MAX(mvx, -((Ipp32s)(mbXOffset + xpos + D_MV_CLIP_LIMIT)*INTERP_FACTOR)); mvy = MIN(mvy, (height - ((Ipp32s)mbYOffset + ypos + sbheight - 1 - D_MV_CLIP_LIMIT))*INTERP_FACTOR); mvy = MAX(mvy, -((Ipp32s)(mbYOffset + ypos + D_MV_CLIP_LIMIT)*INTERP_FACTOR)); mvyc = mvy; xint = mvx >> INTERP_SHIFT; yint = mvy >> INTERP_SHIFT; switch(pred_method) { case ALLOK: pRef = pRefY_sb + offsetY + xint + yint * pitch; ippiInterpolateLuma_H264_8u_C1R(pRef, pitch, pDstY_sb, pitch, xh, yh, roi); break; case PREDICTION_FROM_TOP: pRef = pRefY_sb + offsetY + xint + yint * pitch; InterpolateLumaTop(pRef, pitch, pDstY_sb, pitch, xh, yh, - ((Ipp32s)mbYOffset+ypos+yint),roi); break; case PREDICTION_FROM_BOTTOM: pRef = pRefY_sb + offsetY + xint + yint * pitch; InterpolateLumaBottom(pRef, pitch, pDstY_sb, pitch, xh, yh, ((Ipp32s)mbYOffset+ypos+yint+roi.height)-height,roi); break; default:VM_ASSERT(0); break; } // optional prediction weighting if (bUnidirWeightSB && pPredWeight[uBlockDir][*pRefIndex].luma_weight_flag != 0) { UniDirWeightBlock(pDstY_sb, pitch, sbwidth, sbheight, luma_log2_weight_denom, pPredWeight[uBlockDir][*pRefIndex].luma_weight, pPredWeight[uBlockDir][*pRefIndex].luma_offset); } if (color_format==1) { // chroma (1/8 pixel MV) xh = mvx & (INTERP_FACTOR*2-1); yh = mvyc & (INTERP_FACTOR*2-1); xint = mvx >> (INTERP_SHIFT+1); yint = mvyc >> (INTERP_SHIFT+1); switch(pred_method) { case ALLOK: pRef = pRefV_sb + (offsetY>>1) + xint + yint * pitch; ippiInterpolateChroma_H264_8u_C1R(pRef, pitch, pDstV_sb, pitch, xh, yh, roi_cr); pRef = pRefU_sb + (offsetY>>1) + xint + yint * pitch; ippiInterpolateChroma_H264_8u_C1R(pRef, pitch, pDstU_sb, pitch, xh, yh, roi_cr); break; case PREDICTION_FROM_TOP: pRef = pRefV_sb + (offsetY>>1) + xint + yint * pitch; InterpolateChromaTop(pRef, pitch, pDstV_sb, pitch, xh, yh, - (((Ipp32s)mbYOffset+ypos)/2+yint), roi_cr); pRef = pRefU_sb + (offsetY>>1) + xint + yint * pitch; InterpolateChromaTop(pRef, pitch, pDstU_sb, pitch, xh, yh, - (((Ipp32s)mbYOffset+ypos)/2+yint), roi_cr); break; case PREDICTION_FROM_BOTTOM: pRef = pRefV_sb + (offsetY>>1) + xint + yint * pitch; InterpolateChromaBottom(pRef, pitch, pDstV_sb, pitch, xh, yh, (((Ipp32s)mbYOffset+ypos)/2+yint+roi_cr.height)-height/2,roi_cr); pRef = pRefU_sb + (offsetY>>1) + xint + yint * pitch; InterpolateChromaBottom(pRef, pitch, pDstU_sb, pitch, xh, yh, (((Ipp32s)mbYOffset+ypos)/2+yint+roi_cr.height)-height/2,roi_cr); break; default:VM_ASSERT(0); break; } // optional prediction weighting if (bUnidirWeightSB && pPredWeight[uBlockDir][*pRefIndex].chroma_weight_flag != 0) { UniDirWeightBlock(pDstV_sb, pitch, sbwidth>>1, sbheight>>1, chroma_log2_weight_denom, pPredWeight[uBlockDir][*pRefIndex].chroma_weight[1], pPredWeight[uBlockDir][*pRefIndex].chroma_offset[1]); UniDirWeightBlock(pDstU_sb, pitch, sbwidth>>1, sbheight>>1, chroma_log2_weight_denom, pPredWeight[uBlockDir][*pRefIndex].chroma_weight[0], pPredWeight[uBlockDir][*pRefIndex].chroma_offset[0]); } } } // loopCnt if (loopCnt > 1) { if (!bBidirWeightMB) { // combine bidir predictions into one, no weighting // luma ippiInterpolateBlock_H264_8u_P2P1R(pDstY_sb-16, pDstY_sb, pDstY_sb-16, roi.width, roi.height, pitch); if (color_format==1) { ippiInterpolateBlock_H264_8u_P2P1R(pDstV_sb-8, pDstV_sb, pDstV_sb-8, roi_cr.width, roi_cr.height, pitch); ippiInterpolateBlock_H264_8u_P2P1R(pDstU_sb-8, pDstU_sb, pDstU_sb-8, roi_cr.width, roi_cr.height, pitch); } } else { // combine bidir predictions into one with weighting // combine bidir predictions into one with weighting if (weighted_bipred_idc == 1) { // combine bidir predictions into one, explicit weighting // luma BiDirWeightBlock(pDstY_sb-16, pDstY_sb, pDstY_sb-16, pitch, sbwidth, sbheight, luma_log2_weight_denom, pPredWeight[0][RefIndexL0].luma_weight, pPredWeight[0][RefIndexL0].luma_offset, pPredWeight[1][RefIndexL1].luma_weight, pPredWeight[1][RefIndexL1].luma_offset); if (color_format==1) { // chroma BiDirWeightBlock(pDstV_sb-8, pDstV_sb, pDstV_sb-8, pitch, sbwidth>>1, sbheight>>1, chroma_log2_weight_denom, pPredWeight[0][RefIndexL0].chroma_weight[1], pPredWeight[0][RefIndexL0].chroma_offset[1], pPredWeight[1][RefIndexL1].chroma_weight[1], pPredWeight[1][RefIndexL1].chroma_offset[1]); BiDirWeightBlock(pDstU_sb-8, pDstU_sb, pDstU_sb-8, pitch, sbwidth>>1, sbheight>>1, chroma_log2_weight_denom, pPredWeight[0][RefIndexL0].chroma_weight[0], pPredWeight[0][RefIndexL0].chroma_offset[0], pPredWeight[1][RefIndexL1].chroma_weight[0], pPredWeight[1][RefIndexL1].chroma_offset[0]); } } else if (weighted_bipred_idc == 2) { // combine bidir predictions into one, implicit weighting iDistScaleFactor = pDistScaleFactors[RefIndexL0]>>2; // luma BiDirWeightBlockImplicit(pDstY_sb-16, pDstY_sb, pDstY_sb-16, pitch, pitch, sbwidth, sbheight, 64 - iDistScaleFactor, iDistScaleFactor); if (color_format==1) { // chroma BiDirWeightBlockImplicit(pDstV_sb-8, pDstV_sb, pDstV_sb-8, pitch, pitch, sbwidth>>1, sbheight>>1, 64 - iDistScaleFactor, iDistScaleFactor); BiDirWeightBlockImplicit(pDstU_sb-8, pDstU_sb, pDstU_sb-8, pitch, pitch, sbwidth>>1, sbheight>>1, 64 - iDistScaleFactor, iDistScaleFactor); } } else VM_ASSERT(0); } // weighted } // LoopCnt >1 } // for xpos } // for ypos } // for block } // 8x8} // ReconstructMacroblock////////////////////////////////////////////////////////////////////////////////// Copy raw pixel values from the bitstream to the reconstructed frame for// all luma and chroma blocks of one macroblock.////////////////////////////////////////////////////////////////////////////////void H264VideoDecoder::ReconstructPCMMB(Ipp32u lumaOffset,Ipp8u color_format){ Ipp8u *pDstY; Ipp8u *pDstU; Ipp8u *pDstV; Ipp32u pitch, i; // to retrieve non-aligned pointer from m_pCoeffBlocksRead pitch = m_pCurrentFrame->pitch()<<(Ipp32u) (m_pCurrentFrame->m_PictureStructureForDec<FRM_STRUCTURE); pDstY = m_pCurrentFrame->m_pYPlane + lumaOffset; pDstU = m_pCurrentFrame->m_pUPlane + (lumaOffset>>1); pDstV = m_pCurrentFrame->m_pVPlane + (lumaOffset>>1); // get pointer to raw bytes from m_pCoeffBlocksRead for (i = 0; i<16; i++) memcpy(&pDstY[i*pitch],&m_pCoeffBlocksRead[i*8],16); if (color_format==1) { for (i = 0; i<8; i++) memcpy(&pDstU[i*pitch],&m_pCoeffBlocksRead[i*4+128],8); for (i = 0; i<8; i++) memcpy(&pDstV[i*pitch],&m_pCoeffBlocksRead[i*4+160],8); }} // reconstructPCMMacroblock} // end namespace UMC
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -