⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 jdphuff.c

📁 这是在PCA下的基于IPP库示例代码例子,在网上下了IPP的库之后,设置相关参数就可以编译该代码.
💻 C
📖 第 1 页 / 共 2 页
字号:
      (*block)[0] = (JCOEF) (s << Al);    }    /* Completed MCU, so update state */    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);    ASSIGN_STATE(entropy->saved, state);  }  /* Account for restart interval (no-op if not using restarts) */  entropy->restarts_to_go--;  return TRUE;}/* * MCU decoding for AC initial scan (either spectral selection, * or first pass of successive approximation). */METHODDEF(boolean)decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data){  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;  int Se = cinfo->Se;  int Al = cinfo->Al;  register int s, k, r;  unsigned int EOBRUN;  JBLOCKROW block;  BITREAD_STATE_VARS;  d_derived_tbl * tbl;  /* Process restart marker if needed; may have to suspend */  if (cinfo->restart_interval) {    if (entropy->restarts_to_go == 0)      if (! process_restart(cinfo))        return FALSE;  }  /* If we've run out of data, just leave the MCU set to zeroes.   * This way, we return uniform gray for the remainder of the segment.   */  if (! entropy->pub.insufficient_data) {    /* Load up working state.     * We can avoid loading/saving bitread state if in an EOB run.     */    EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */    /* There is always only one block per MCU */    if (EOBRUN > 0)   /* if it's a band of zeroes... */      EOBRUN--;     /* ...process it now (we do nothing) */    else {      BITREAD_LOAD_STATE(cinfo,entropy->bitstate);      block = MCU_data[0];      tbl = entropy->ac_derived_tbl;      for (k = cinfo->Ss; k <= Se; k++) {        HUFF_DECODE(s, br_state, tbl, return FALSE, label2);        r = s >> 4;        s &= 15;        if (s) {          k += r;          CHECK_BIT_BUFFER(br_state, s, return FALSE);          r = GET_BITS(s);          s = HUFF_EXTEND(r, s);          /* Scale and output coefficient in natural (dezigzagged) order */          (*block)[jpeg_natural_order[k]] = (JCOEF) (s << Al);        } else {          if (r == 15) {  /* ZRL */            k += 15;    /* skip 15 zeroes in band */          } else {    /* EOBr, run length is 2^r + appended bits */            EOBRUN = 1 << r;            if (r) {    /* EOBr, r > 0 */              CHECK_BIT_BUFFER(br_state, r, return FALSE);              r = GET_BITS(r);              EOBRUN += r;            }            EOBRUN--;   /* this band is processed at this moment */            break;    /* force end-of-band */          }        }      }      BITREAD_SAVE_STATE(cinfo,entropy->bitstate);    }    /* Completed MCU, so update state */    entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */  }  /* Account for restart interval (no-op if not using restarts) */  entropy->restarts_to_go--;  return TRUE;}/* * MCU decoding for DC successive approximation refinement scan. * Note: we assume such scans can be multi-component, although the spec * is not very clear on the point. */METHODDEF(boolean)decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data){  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;  int p1 = 1 << cinfo->Al;  /* 1 in the bit position being coded */  int blkn;  JBLOCKROW block;  BITREAD_STATE_VARS;  /* Process restart marker if needed; may have to suspend */  if (cinfo->restart_interval) {    if (entropy->restarts_to_go == 0)      if (! process_restart(cinfo))        return FALSE;  }  /* Not worth the cycles to check insufficient_data here,   * since we will not change the data anyway if we read zeroes.   */  /* Load up working state */  BITREAD_LOAD_STATE(cinfo,entropy->bitstate);  /* Outer loop handles each block in the MCU */  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {    block = MCU_data[blkn];    /* Encoded data is simply the next bit of the two's-complement DC value */    CHECK_BIT_BUFFER(br_state, 1, return FALSE);    if (GET_BITS(1))      (*block)[0] |= p1;    /* Note: since we use |=, repeating the assignment later is safe */  }  /* Completed MCU, so update state */  BITREAD_SAVE_STATE(cinfo,entropy->bitstate);  /* Account for restart interval (no-op if not using restarts) */  entropy->restarts_to_go--;  return TRUE;}/* * MCU decoding for AC successive approximation refinement scan. */METHODDEF(boolean)decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data){  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;  int Se = cinfo->Se;  int p1 = 1 << cinfo->Al;  /* 1 in the bit position being coded */  int m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */  register int s, k, r;  unsigned int EOBRUN;  JBLOCKROW block;  JCOEFPTR thiscoef;  BITREAD_STATE_VARS;  d_derived_tbl * tbl;  int num_newnz;  int newnz_pos[DCTSIZE2];  /* Process restart marker if needed; may have to suspend */  if (cinfo->restart_interval) {    if (entropy->restarts_to_go == 0)      if (! process_restart(cinfo))        return FALSE;  }  /* If we've run out of data, don't modify the MCU.   */  if (! entropy->pub.insufficient_data) {    /* Load up working state */    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);    EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */    /* There is always only one block per MCU */    block = MCU_data[0];    tbl = entropy->ac_derived_tbl;    /* If we are forced to suspend, we must undo the assignments to any newly     * nonzero coefficients in the block, because otherwise we'd get confused     * next time about which coefficients were already nonzero.     * But we need not undo addition of bits to already-nonzero coefficients;     * instead, we can test the current bit to see if we already did it.     */    num_newnz = 0;    /* initialize coefficient loop counter to start of band */    k = cinfo->Ss;    if (EOBRUN == 0) {      for (; k <= Se; k++) {        HUFF_DECODE(s, br_state, tbl, goto undoit, label3);        r = s >> 4;        s &= 15;        if (s) {          if (s != 1)   /* size of new coef should always be 1 */            WARNMS(cinfo, JWRN_HUFF_BAD_CODE);          CHECK_BIT_BUFFER(br_state, 1, goto undoit);          if (GET_BITS(1))            s = p1;   /* newly nonzero coef is positive */          else            s = m1;   /* newly nonzero coef is negative */        } else {          if (r != 15) {            EOBRUN = 1 << r;  /* EOBr, run length is 2^r + appended bits */          if (r) {            CHECK_BIT_BUFFER(br_state, r, goto undoit);            r = GET_BITS(r);            EOBRUN += r;          }          break;    /* rest of block is handled by EOB logic */          }          /* note s = 0 for processing ZRL */        }        /* Advance over already-nonzero coefs and r still-zero coefs,         * appending correction bits to the nonzeroes.  A correction bit is 1         * if the absolute value of the coefficient must be increased.         */        do {          thiscoef = *block + jpeg_natural_order[k];          if (*thiscoef != 0) {            CHECK_BIT_BUFFER(br_state, 1, goto undoit);            if (GET_BITS(1)) {              if ((*thiscoef & p1) == 0) { /* do nothing if already set it */                if (*thiscoef >= 0)                  *thiscoef += p1;                else                  *thiscoef += m1;              }            }          } else {            if (--r < 0)              break;    /* reached target zero coefficient */          }          k++;        } while (k <= Se);        if (s) {          int pos = jpeg_natural_order[k];          /* Output newly nonzero coefficient */          (*block)[pos] = (JCOEF) s;          /* Remember its position in case we have to suspend */          newnz_pos[num_newnz++] = pos;        }      }    }    if (EOBRUN > 0) {      /* Scan any remaining coefficient positions after the end-of-band       * (the last newly nonzero coefficient, if any).  Append a correction       * bit to each already-nonzero coefficient.  A correction bit is 1       * if the absolute value of the coefficient must be increased.       */      for (; k <= Se; k++) {        thiscoef = *block + jpeg_natural_order[k];        if (*thiscoef != 0) {          CHECK_BIT_BUFFER(br_state, 1, goto undoit);          if (GET_BITS(1)) {            if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */              if (*thiscoef >= 0)                *thiscoef += p1;              else                *thiscoef += m1;            }          }        }      }      /* Count one block completed in EOB run */      EOBRUN--;    }    /* Completed MCU, so update state */    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);    entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */  }  /* Account for restart interval (no-op if not using restarts) */  entropy->restarts_to_go--;  return TRUE;undoit:  /* Re-zero any output coefficients that we made newly nonzero */  while (num_newnz > 0)    (*block)[newnz_pos[--num_newnz]] = 0;  return FALSE;}/* * Module initialization routine for progressive Huffman entropy decoding. */GLOBAL(void)jinit_phuff_decoder (j_decompress_ptr cinfo){  phuff_entropy_ptr entropy;  int *coef_bit_ptr;  int ci, i;  entropy = (phuff_entropy_ptr)    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,        SIZEOF(phuff_entropy_decoder));  cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;  entropy->pub.start_pass = start_pass_phuff_decoder;  /* Mark derived tables unallocated */  for (i = 0; i < NUM_HUFF_TBLS; i++) {    entropy->derived_tbls[i] = NULL;  }  /* Create progression status table */  cinfo->coef_bits = (int (*)[DCTSIZE2])    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,        cinfo->num_components*DCTSIZE2*SIZEOF(int));  coef_bit_ptr = & cinfo->coef_bits[0][0];  for (ci = 0; ci < cinfo->num_components; ci++)    for (i = 0; i < DCTSIZE2; i++)      *coef_bit_ptr++ = -1;}#endif /* D_PROGRESSIVE_SUPPORTED */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -