📄 stl_algo.h
字号:
else { std::iter_swap(__first, __last); ++__first; } } /** * @if maint * This is an uglified reverse(_BidirectionalIterator, * _BidirectionalIterator) * overloaded for random access iterators. * @endif */ template<typename _RandomAccessIterator> void __reverse(_RandomAccessIterator __first, _RandomAccessIterator __last, random_access_iterator_tag) { if (__first == __last) return; --__last; while (__first < __last) { std::iter_swap(__first, __last); ++__first; --__last; } } /** * @brief Reverse a sequence. * @param first A bidirectional iterator. * @param last A bidirectional iterator. * @return reverse() returns no value. * * Reverses the order of the elements in the range @p [first,last), * so that the first element becomes the last etc. * For every @c i such that @p 0<=i<=(last-first)/2), @p reverse() * swaps @p *(first+i) and @p *(last-(i+1)) */ template<typename _BidirectionalIterator> inline void reverse(_BidirectionalIterator __first, _BidirectionalIterator __last) { // concept requirements __glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept< _BidirectionalIterator>) __glibcxx_requires_valid_range(__first, __last); std::__reverse(__first, __last, std::__iterator_category(__first)); } /** * @brief Copy a sequence, reversing its elements. * @param first A bidirectional iterator. * @param last A bidirectional iterator. * @param result An output iterator. * @return An iterator designating the end of the resulting sequence. * * Copies the elements in the range @p [first,last) to the range * @p [result,result+(last-first)) such that the order of the * elements is reversed. * For every @c i such that @p 0<=i<=(last-first), @p reverse_copy() * performs the assignment @p *(result+(last-first)-i) = *(first+i). * The ranges @p [first,last) and @p [result,result+(last-first)) * must not overlap. */ template<typename _BidirectionalIterator, typename _OutputIterator> _OutputIterator reverse_copy(_BidirectionalIterator __first, _BidirectionalIterator __last, _OutputIterator __result) { // concept requirements __glibcxx_function_requires(_BidirectionalIteratorConcept< _BidirectionalIterator>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_BidirectionalIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); while (__first != __last) { --__last; *__result = *__last; ++__result; } return __result; } /** * @if maint * This is a helper function for the rotate algorithm specialized on RAIs. * It returns the greatest common divisor of two integer values. * @endif */ template<typename _EuclideanRingElement> _EuclideanRingElement __gcd(_EuclideanRingElement __m, _EuclideanRingElement __n) { while (__n != 0) { _EuclideanRingElement __t = __m % __n; __m = __n; __n = __t; } return __m; } /** * @if maint * This is a helper function for the rotate algorithm. * @endif */ template<typename _ForwardIterator> void __rotate(_ForwardIterator __first, _ForwardIterator __middle, _ForwardIterator __last, forward_iterator_tag) { if (__first == __middle || __last == __middle) return; _ForwardIterator __first2 = __middle; do { swap(*__first, *__first2); ++__first; ++__first2; if (__first == __middle) __middle = __first2; } while (__first2 != __last); __first2 = __middle; while (__first2 != __last) { swap(*__first, *__first2); ++__first; ++__first2; if (__first == __middle) __middle = __first2; else if (__first2 == __last) __first2 = __middle; } } /** * @if maint * This is a helper function for the rotate algorithm. * @endif */ template<typename _BidirectionalIterator> void __rotate(_BidirectionalIterator __first, _BidirectionalIterator __middle, _BidirectionalIterator __last, bidirectional_iterator_tag) { // concept requirements __glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept< _BidirectionalIterator>) if (__first == __middle || __last == __middle) return; std::__reverse(__first, __middle, bidirectional_iterator_tag()); std::__reverse(__middle, __last, bidirectional_iterator_tag()); while (__first != __middle && __middle != __last) { swap(*__first, *--__last); ++__first; } if (__first == __middle) std::__reverse(__middle, __last, bidirectional_iterator_tag()); else std::__reverse(__first, __middle, bidirectional_iterator_tag()); } /** * @if maint * This is a helper function for the rotate algorithm. * @endif */ template<typename _RandomAccessIterator> void __rotate(_RandomAccessIterator __first, _RandomAccessIterator __middle, _RandomAccessIterator __last, random_access_iterator_tag) { // concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) if (__first == __middle || __last == __middle) return; typedef typename iterator_traits<_RandomAccessIterator>::difference_type _Distance; typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; const _Distance __n = __last - __first; const _Distance __k = __middle - __first; const _Distance __l = __n - __k; if (__k == __l) { std::swap_ranges(__first, __middle, __middle); return; } const _Distance __d = __gcd(__n, __k); for (_Distance __i = 0; __i < __d; __i++) { _ValueType __tmp = *__first; _RandomAccessIterator __p = __first; if (__k < __l) { for (_Distance __j = 0; __j < __l / __d; __j++) { if (__p > __first + __l) { *__p = *(__p - __l); __p -= __l; } *__p = *(__p + __k); __p += __k; } } else { for (_Distance __j = 0; __j < __k / __d - 1; __j ++) { if (__p < __last - __k) { *__p = *(__p + __k); __p += __k; } *__p = * (__p - __l); __p -= __l; } } *__p = __tmp; ++__first; } } /** * @brief Rotate the elements of a sequence. * @param first A forward iterator. * @param middle A forward iterator. * @param last A forward iterator. * @return Nothing. * * Rotates the elements of the range @p [first,last) by @p (middle-first) * positions so that the element at @p middle is moved to @p first, the * element at @p middle+1 is moved to @first+1 and so on for each element * in the range @p [first,last). * * This effectively swaps the ranges @p [first,middle) and * @p [middle,last). * * Performs @p *(first+(n+(last-middle))%(last-first))=*(first+n) for * each @p n in the range @p [0,last-first). */ template<typename _ForwardIterator> inline void rotate(_ForwardIterator __first, _ForwardIterator __middle, _ForwardIterator __last) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator>) __glibcxx_requires_valid_range(__first, __middle); __glibcxx_requires_valid_range(__middle, __last); typedef typename iterator_traits<_ForwardIterator>::iterator_category _IterType; std::__rotate(__first, __middle, __last, _IterType()); } /** * @brief Copy a sequence, rotating its elements. * @param first A forward iterator. * @param middle A forward iterator. * @param last A forward iterator. * @param result An output iterator. * @return An iterator designating the end of the resulting sequence. * * Copies the elements of the range @p [first,last) to the range * beginning at @result, rotating the copied elements by @p (middle-first) * positions so that the element at @p middle is moved to @p result, the * element at @p middle+1 is moved to @result+1 and so on for each element * in the range @p [first,last). * * Performs @p *(result+(n+(last-middle))%(last-first))=*(first+n) for * each @p n in the range @p [0,last-first). */ template<typename _ForwardIterator, typename _OutputIterator> _OutputIterator rotate_copy(_ForwardIterator __first, _ForwardIterator __middle, _ForwardIterator __last, _OutputIterator __result) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __middle); __glibcxx_requires_valid_range(__middle, __last); return std::copy(__first, __middle, std::copy(__middle, __last, __result)); } /** * @brief Randomly shuffle the elements of a sequence. * @param first A forward iterator. * @param last A forward iterator. * @return Nothing. * * Reorder the elements in the range @p [first,last) using a random * distribution, so that every possible ordering of the sequence is * equally likely. */ template<typename _RandomAccessIterator> inline void random_shuffle(_RandomAccessIterator __first, _RandomAccessIterator __last) { // concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_requires_valid_range(__first, __last); if (__first != __last) for (_RandomAccessIterator __i = __first + 1; __i != __last; ++__i) std::iter_swap(__i, __first + (std::rand() % ((__i - __first) + 1))); } /** * @brief Shuffle the elements of a sequence using a random number * generator. * @param first A forward iterator. * @param last A forward iterator. * @param rand The RNG functor or function. * @return Nothing. * * Reorders the elements in the range @p [first,last) using @p rand to * provide a random distribution. Calling @p rand(N) for a positive * integer @p N should return a randomly chosen integer from the * range [0,N). */ template<typename _RandomAccessIterator, typename _RandomNumberGenerator> void random_shuffle(_RandomAccessIterator __first, _RandomAccessIterator __last, _RandomNumberGenerator& __rand) { // concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_requires_valid_range(__first, __last); if (__first == __last) return; for (_RandomAccessIterator __i = __first + 1; __i != __last; ++__i) std::iter_swap(__i, __first + __rand((__i - __first) + 1)); } /** * @if maint * This is a helper function... * @endif */ template<typename _ForwardIterator, typename _Predicate> _ForwardIterator __partition(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred, forward_iterator_tag) { if (
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -