📄 array
字号:
// class template array -*- C++ -*-// Copyright (C) 2004, 2005, 2006 Free Software Foundation, Inc.//// This file is part of the GNU ISO C++ Library. This library is free// software; you can redistribute it and/or modify it under the// terms of the GNU General Public License as published by the// Free Software Foundation; either version 2, or (at your option)// any later version.// This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the// GNU General Public License for more details.// You should have received a copy of the GNU General Public License along// with this library; see the file COPYING. If not, write to the Free// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,// USA.// As a special exception, you may use this file as part of a free software// library without restriction. Specifically, if other files instantiate// templates or use macros or inline functions from this file, or you compile// this file and link it with other files to produce an executable, this// file does not by itself cause the resulting executable to be covered by// the GNU General Public License. This exception does not however// invalidate any other reasons why the executable file might be covered by// the GNU General Public License./** @file * This is a TR1 C++ Library header. */#ifndef _ARRAY#define _ARRAY 1#include <new>#include <iterator>#include <algorithm>#include <cstddef>#include <bits/functexcept.h>//namespace std::tr1namespace std{namespace tr1{ /// @brief struct array [6.2.2]. /// NB: Requires complete type _Tp. template<typename _Tp, std::size_t _Nm = 1> struct array { typedef _Tp value_type; typedef value_type& reference; typedef const value_type& const_reference; typedef value_type* iterator; typedef const value_type* const_iterator; typedef std::size_t size_type; typedef std::ptrdiff_t difference_type; typedef std::reverse_iterator<iterator> reverse_iterator; typedef std::reverse_iterator<const_iterator> const_reverse_iterator; // Compile time constant without other dependencies. enum { _S_index = _Nm }; // Support for zero-sized arrays mandatory. value_type _M_instance[_Nm ? _Nm : 1] __attribute__((__aligned__)); // No explicit construct/copy/destroy for aggregate type. void assign(const value_type& u); void swap(array&); // Iterators. iterator begin() { return iterator(&_M_instance[0]); } const_iterator begin() const { return const_iterator(&_M_instance[0]); } iterator end() { return iterator(&_M_instance[_Nm]); } const_iterator end() const { return const_iterator(&_M_instance[_Nm]); } reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } // Capacity. size_type size() const { return _Nm; } size_type max_size() const { return _Nm; } bool empty() const { return size() == 0; } // Element access. reference operator[](size_type __n) { return _M_instance[__n]; } const_reference operator[](size_type __n) const { return _M_instance[__n]; } const_reference at(size_type __n) const { if (__builtin_expect(__n > _Nm, false)) std::__throw_out_of_range("array::at"); return _M_instance[__n]; } reference at(size_type __n) { if (__builtin_expect(__n > _Nm, false)) std::__throw_out_of_range("array::at"); return _M_instance[__n]; } reference front() { return *begin(); } const_reference front() const { return *begin(); } reference back() { return *(end() - 1); } const_reference back() const { return *(end() - 1); } _Tp* data() { return &_M_instance[0]; } const _Tp* data() const { return &_M_instance[0]; } }; // Array comparisons. template<typename _Tp, std::size_t _Nm> bool operator==(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two) { return std::equal(__one.begin(), __one.end(), __two.begin()); } template<typename _Tp, std::size_t _Nm> bool operator!=(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two) { return !(__one == __two); } template<typename _Tp, std::size_t _Nm> bool operator<(const array<_Tp, _Nm>& __a, const array<_Tp, _Nm>& __b) { return std::lexicographical_compare(__a.begin(), __a.end(), __b.begin(), __b.end()); } template<typename _Tp, std::size_t _Nm> bool operator>(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two) { return __two < __one; } template<typename _Tp, std::size_t _Nm> bool operator<=(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two) { return !(__one > __two); } template<typename _Tp, std::size_t _Nm> bool operator>=(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two) { return !(__one < __two); } // Specialized algorithms [6.2.2.2]. template<typename _Tp, std::size_t _Nm> void swap(array<_Tp, _Nm>& __one, array<_Tp, _Nm>& __two) { swap_ranges(__one.begin(), __one.end(), __two.begin()); } // Tuple interface to class template array [6.2.2.5]. template<typename _Tp> class tuple_size; template<int _Int, typename _Tp> class tuple_element; template<typename _Tp, std::size_t _Nm> struct tuple_size<array<_Tp, _Nm> > { static const int value = _Nm; }; template<int _Int, typename _Tp, std::size_t _Nm> struct tuple_element<_Int, array<_Tp, _Nm> > { typedef _Tp type; }; template<int _Int, typename _Tp, std::size_t _Nm> _Tp& get(array<_Tp, _Nm>& __arr) { return __arr[_Int]; } template<int _Int, typename _Tp, std::size_t _Nm> const _Tp& get(const array<_Tp, _Nm>& __arr) { return __arr[_Int]; }} // namespace std::tr1}#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -