⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 std_complex.h

📁 linux下编程用 编译软件
💻 H
📖 第 1 页 / 共 3 页
字号:
	      else		__is.setstate(ios_base::failbit);	    }	  else if (__ch == ')') 	    __x = __re_x;	  else	    __is.setstate(ios_base::failbit);	}      else 	{	  __is.putback(__ch);	  __is >> __re_x;	  __x = __re_x;	}      return __is;    }  ///  Insertion operator for complex values.  template<typename _Tp, typename _CharT, class _Traits>    basic_ostream<_CharT, _Traits>&    operator<<(basic_ostream<_CharT, _Traits>& __os, const complex<_Tp>& __x)    {      basic_ostringstream<_CharT, _Traits> __s;      __s.flags(__os.flags());      __s.imbue(__os.getloc());      __s.precision(__os.precision());      __s << '(' << __x.real() << ',' << __x.imag() << ')';      return __os << __s.str();    }  // Values  template<typename _Tp>    inline _Tp&    real(complex<_Tp>& __z)    { return __z.real(); }      template<typename _Tp>    inline const _Tp&    real(const complex<_Tp>& __z)    { return __z.real(); }      template<typename _Tp>    inline _Tp&    imag(complex<_Tp>& __z)    { return __z.imag(); }      template<typename _Tp>    inline const _Tp&    imag(const complex<_Tp>& __z)    { return __z.imag(); }  // 26.2.7/3 abs(__z):  Returns the magnitude of __z.  template<typename _Tp>    inline _Tp    __complex_abs(const complex<_Tp>& __z)    {      _Tp __x = __z.real();      _Tp __y = __z.imag();      const _Tp __s = std::max(abs(__x), abs(__y));      if (__s == _Tp())  // well ...        return __s;      __x /= __s;       __y /= __s;      return __s * sqrt(__x * __x + __y * __y);    }#if _GLIBCXX_USE_C99_COMPLEX  inline float  __complex_abs(__complex__ float __z) { return __builtin_cabsf(__z); }  inline double  __complex_abs(__complex__ double __z) { return __builtin_cabs(__z); }  inline long double  __complex_abs(const __complex__ long double& __z)  { return __builtin_cabsl(__z); }  template<typename _Tp>    inline _Tp    abs(const complex<_Tp>& __z) { return __complex_abs(__z.__rep()); }#else  template<typename _Tp>    inline _Tp    abs(const complex<_Tp>& __z) { return __complex_abs(__z); }#endif    // 26.2.7/4: arg(__z): Returns the phase angle of __z.  template<typename _Tp>    inline _Tp    __complex_arg(const complex<_Tp>& __z)    { return  atan2(__z.imag(), __z.real()); }#if _GLIBCXX_USE_C99_COMPLEX  inline float  __complex_arg(__complex__ float __z) { return __builtin_cargf(__z); }  inline double  __complex_arg(__complex__ double __z) { return __builtin_carg(__z); }  inline long double  __complex_arg(const __complex__ long double& __z)  { return __builtin_cargl(__z); }  template<typename _Tp>    inline _Tp    arg(const complex<_Tp>& __z) { return __complex_arg(__z.__rep()); }#else  template<typename _Tp>    inline _Tp    arg(const complex<_Tp>& __z) { return __complex_arg(__z); }#endif  // 26.2.7/5: norm(__z) returns the squared magintude of __z.  //     As defined, norm() is -not- a norm is the common mathematical  //     sens used in numerics.  The helper class _Norm_helper<> tries to  //     distinguish between builtin floating point and the rest, so as  //     to deliver an answer as close as possible to the real value.  template<bool>    struct _Norm_helper    {      template<typename _Tp>        static inline _Tp _S_do_it(const complex<_Tp>& __z)        {          const _Tp __x = __z.real();          const _Tp __y = __z.imag();          return __x * __x + __y * __y;        }    };  template<>    struct _Norm_helper<true>    {      template<typename _Tp>        static inline _Tp _S_do_it(const complex<_Tp>& __z)        {          _Tp __res = std::abs(__z);          return __res * __res;        }    };    template<typename _Tp>    inline _Tp    norm(const complex<_Tp>& __z)    {      return _Norm_helper<__is_floating<_Tp>::__value 	&& !_GLIBCXX_FAST_MATH>::_S_do_it(__z);    }  template<typename _Tp>    inline complex<_Tp>    polar(const _Tp& __rho, const _Tp& __theta)    { return complex<_Tp>(__rho * cos(__theta), __rho * sin(__theta)); }  template<typename _Tp>    inline complex<_Tp>    conj(const complex<_Tp>& __z)    { return complex<_Tp>(__z.real(), -__z.imag()); }    // Transcendentals  // 26.2.8/1 cos(__z):  Returns the cosine of __z.  template<typename _Tp>    inline complex<_Tp>    __complex_cos(const complex<_Tp>& __z)    {      const _Tp __x = __z.real();      const _Tp __y = __z.imag();      return complex<_Tp>(cos(__x) * cosh(__y), -sin(__x) * sinh(__y));    }#if _GLIBCXX_USE_C99_COMPLEX  inline __complex__ float  __complex_cos(__complex__ float __z) { return __builtin_ccosf(__z); }  inline __complex__ double  __complex_cos(__complex__ double __z) { return __builtin_ccos(__z); }  inline __complex__ long double  __complex_cos(const __complex__ long double& __z)  { return __builtin_ccosl(__z); }  template<typename _Tp>    inline complex<_Tp>    cos(const complex<_Tp>& __z) { return __complex_cos(__z.__rep()); }#else  template<typename _Tp>    inline complex<_Tp>    cos(const complex<_Tp>& __z) { return __complex_cos(__z); }#endif  // 26.2.8/2 cosh(__z): Returns the hyperbolic cosine of __z.  template<typename _Tp>    inline complex<_Tp>    __complex_cosh(const complex<_Tp>& __z)    {      const _Tp __x = __z.real();      const _Tp __y = __z.imag();      return complex<_Tp>(cosh(__x) * cos(__y), sinh(__x) * sin(__y));    }#if _GLIBCXX_USE_C99_COMPLEX  inline __complex__ float  __complex_cosh(__complex__ float __z) { return __builtin_ccoshf(__z); }  inline __complex__ double  __complex_cosh(__complex__ double __z) { return __builtin_ccosh(__z); }  inline __complex__ long double  __complex_cosh(const __complex__ long double& __z)  { return __builtin_ccoshl(__z); }  template<typename _Tp>    inline complex<_Tp>    cosh(const complex<_Tp>& __z) { return __complex_cosh(__z.__rep()); }#else  template<typename _Tp>    inline complex<_Tp>    cosh(const complex<_Tp>& __z) { return __complex_cosh(__z); }#endif  // 26.2.8/3 exp(__z): Returns the complex base e exponential of x  template<typename _Tp>    inline complex<_Tp>    __complex_exp(const complex<_Tp>& __z)    { return std::polar(exp(__z.real()), __z.imag()); }#if _GLIBCXX_USE_C99_COMPLEX  inline __complex__ float  __complex_exp(__complex__ float __z) { return __builtin_cexpf(__z); }  inline __complex__ double  __complex_exp(__complex__ double __z) { return __builtin_cexp(__z); }  inline __complex__ long double  __complex_exp(const __complex__ long double& __z)  { return __builtin_cexpl(__z); }  template<typename _Tp>    inline complex<_Tp>    exp(const complex<_Tp>& __z) { return __complex_exp(__z.__rep()); }#else  template<typename _Tp>    inline complex<_Tp>    exp(const complex<_Tp>& __z) { return __complex_exp(__z); }#endif  // 26.2.8/5 log(__z): Reurns the natural complex logaritm of __z.  //                    The branch cut is along the negative axis.  template<typename _Tp>    inline complex<_Tp>    __complex_log(const complex<_Tp>& __z)    { return complex<_Tp>(log(std::abs(__z)), std::arg(__z)); }#if _GLIBCXX_USE_C99_COMPLEX  inline __complex__ float  __complex_log(__complex__ float __z) { return __builtin_clogf(__z); }  inline __complex__ double  __complex_log(__complex__ double __z) { return __builtin_clog(__z); }  inline __complex__ long double  __complex_log(const __complex__ long double& __z)  { return __builtin_clogl(__z); }  template<typename _Tp>    inline complex<_Tp>    log(const complex<_Tp>& __z) { return __complex_log(__z.__rep()); }#else  template<typename _Tp>    inline complex<_Tp>    log(const complex<_Tp>& __z) { return __complex_log(__z); }#endif  template<typename _Tp>    inline complex<_Tp>    log10(const complex<_Tp>& __z)    { return std::log(__z) / log(_Tp(10.0)); }  // 26.2.8/10 sin(__z): Returns the sine of __z.  template<typename _Tp>    inline complex<_Tp>    __complex_sin(const complex<_Tp>& __z)    {      const _Tp __x = __z.real();      const _Tp __y = __z.imag();      return complex<_Tp>(sin(__x) * cosh(__y), cos(__x) * sinh(__y));     }#if _GLIBCXX_USE_C99_COMPLEX  inline __complex__ float  __complex_sin(__complex__ float __z) { return __builtin_csinf(__z); }  inline __complex__ double  __complex_sin(__complex__ double __z) { return __builtin_csin(__z); }  inline __complex__ long double  __complex_sin(const __complex__ long double& __z)  { return __builtin_csinl(__z); }  template<typename _Tp>    inline complex<_Tp>    sin(const complex<_Tp>& __z) { return __complex_sin(__z.__rep()); }#else  template<typename _Tp>    inline complex<_Tp>    sin(const complex<_Tp>& __z) { return __complex_sin(__z); }#endif  // 26.2.8/11 sinh(__z): Returns the hyperbolic sine of __z.  template<typename _Tp>    inline complex<_Tp>    __complex_sinh(const complex<_Tp>& __z)    {      const _Tp __x = __z.real();      const _Tp  __y = __z.imag();      return complex<_Tp>(sinh(__x) * cos(__y), cosh(__x) * sin(__y));    }#if _GLIBCXX_USE_C99_COMPLEX  inline __complex__ float  __complex_sinh(__complex__ float __z) { return __builtin_csinhf(__z); }        inline __complex__ double  __complex_sinh(__complex__ double __z) { return __builtin_csinh(__z); }        inline __complex__ long double  __complex_sinh(const __complex__ long double& __z)  { return __builtin_csinhl(__z); }        template<typename _Tp>    inline complex<_Tp>    sinh(const complex<_Tp>& __z) { return __complex_sinh(__z.__rep()); }#else  template<typename _Tp>    inline complex<_Tp>    sinh(const complex<_Tp>& __z) { return __complex_sinh(__z); }#endif  // 26.2.8/13 sqrt(__z): Returns the complex square root of __z.  //                     The branch cut is on the negative axis.  template<typename _Tp>    complex<_Tp>    __complex_sqrt(const complex<_Tp>& __z)    {      _Tp __x = __z.real();      _Tp __y = __z.imag();      if (__x == _Tp())        {          _Tp __t = sqrt(abs(__y) / 2);          return complex<_Tp>(__t, __y < _Tp() ? -__t : __t);        }      else        {          _Tp __t = sqrt(2 * (std::abs(__z) + abs(__x)));          _Tp __u = __t / 2;          return __x > _Tp()            ? complex<_Tp>(__u, __y / __t)            : complex<_Tp>(abs(__y) / __t, __y < _Tp() ? -__u : __u);        }    }#if _GLIBCXX_USE_C99_COMPLEX  inline __complex__ float  __complex_sqrt(__complex__ float __z) { return __builtin_csqrtf(__z); }  inline __complex__ double  __complex_sqrt(__complex__ double __z) { return __builtin_csqrt(__z); }  inline __complex__ long double  __complex_sqrt(const __complex__ long double& __z)  { return __builtin_csqrtl(__z); }  template<typename _Tp>    inline complex<_Tp>    sqrt(const complex<_Tp>& __z) { return __complex_sqrt(__z.__rep()); }#else  template<typename _Tp>    inline complex<_Tp>    sqrt(const complex<_Tp>& __z) { return __complex_sqrt(__z); }#endif  // 26.2.8/14 tan(__z):  Return the complex tangent of __z.    template<typename _Tp>    inline complex<_Tp>    __complex_tan(const complex<_Tp>& __z)    { return std::sin(__z) / std::cos(__z); }#if _GLIBCXX_USE_C99_COMPLEX  inline __complex__ float  __complex_tan(__complex__ float __z) { return __builtin_ctanf(__z); }  inline __complex__ double  __complex_tan(__complex__ double __z) { return __builtin_ctan(__z); }  inline __complex__ long double  __complex_tan(const __complex__ long double& __z)  { return __builtin_ctanl(__z); }  template<typename _Tp>    inline complex<_Tp>    tan(const complex<_Tp>& __z) { return __complex_tan(__z.__rep()); }#else  template<typename _Tp>    inline complex<_Tp>    tan(const complex<_Tp>& __z) { return __complex_tan(__z); }#endif  // 26.2.8/15 tanh(__z):  Returns the hyperbolic tangent of __z.    template<typename _Tp>    inline complex<_Tp>    __complex_tanh(const complex<_Tp>& __z)    { return std::sinh(__z) / std::cosh(__z); }#if _GLIBCXX_USE_C99_COMPLEX  inline __complex__ float  __complex_tanh(__complex__ float __z) { return __builtin_ctanhf(__z); }  inline __complex__ double  __complex_tanh(__complex__ double __z) { return __builtin_ctanh(__z); }  inline __complex__ long double  __complex_tanh(const __complex__ long double& __z)  { return __builtin_ctanhl(__z); }  template<typename _Tp>    inline complex<_Tp>    tanh(const complex<_Tp>& __z) { return __complex_tanh(__z.__rep()); }#else  template<typename _Tp>    inline complex<_Tp>    tanh(const complex<_Tp>& __z) { return __complex_tanh(__z); }#endif  // 26.2.8/9  pow(__x, __y): Returns the complex power base of __x  //                          raised to the __y-th power.  The branch  //                          cut is on the negative axis.  template<typename _Tp>    inline complex<_Tp>    pow(const complex<_Tp>& __z, int __n)    { return std::__pow_helper(__z, __n); }  template<typename _Tp>    complex<_Tp>    pow(const complex<_Tp>& __x, const _Tp& __y)    {#ifndef _GLIBCXX_USE_C99_COMPLEX      if (__x == _Tp())	return _Tp();#endif      if (__x.imag() == _Tp() && __x.real() > _Tp())        return pow(__x.real(), __y);      complex<_Tp> __t = std::log(__x);      return std::polar(exp(__y * __t.real()), __y * __t.imag());    }  template<typename _Tp>    inline complex<_Tp>    __complex_pow(const complex<_Tp>& __x, const complex<_Tp>& __y)    { return __x == _Tp() ? _Tp() : std::exp(__y * std::log(__x)); }#if _GLIBCXX_USE_C99_COMPLEX  inline __complex__ float  __complex_pow(__complex__ float __x, __complex__ float __y)  { return __builtin_cpowf(__x, __y); }  inline __complex__ double  __complex_pow(__complex__ double __x, __complex__ double __y)  { return __builtin_cpow(__x, __y); }  inline __complex__ long double  __complex_pow(const __complex__ long double& __x,		const __complex__ long double& __y)  { return __builtin_cpowl(__x, __y); }  template<typename _Tp>    inline complex<_Tp>    pow(const complex<_Tp>& __x, const complex<_Tp>& __y)    { return __complex_pow(__x.__rep(), __y.__rep()); }#else  template<typename _Tp>    inline complex<_Tp>    pow(const complex<_Tp>& __x, const complex<_Tp>& __y)    { return __complex_pow(__x, __y); }#endif  template<typename _Tp>    inline complex<_Tp>    pow(const _Tp& __x, const complex<_Tp>& __y)    {      return __x > _Tp() ? std::polar(pow(__x, __y.real()),

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -