📄 intrinsic_nearest.f90
字号:
!Program to test NEAREST intrinsic function.program test_nearest real s, r, x, y, inf, max integer i, infi, maxi equivalence (s,i) equivalence (inf,infi) equivalence (max,maxi) r = 2.0 s = 3.0 call test_n (s, r) i = z'00800000' call test_n (s, r) i = z'007fffff' call test_n (s, r) i = z'00800100' call test_n (s, r) s = 0 x = nearest(s, r) y = nearest(s, -r) if (.not. (x .gt. s .and. y .lt. s )) call abort()! ??? This is pretty sketchy, but passes on most targets. infi = z'7f800000' maxi = z'7f7fffff' call test_up(max, inf) call test_up(-inf, -max) call test_down(inf, max) call test_down(-max, -inf)! ??? Here we require the F2003 IEEE_ARITHMETIC module to! determine if denormals are supported. If they are, then! nearest(0,1) is the minimum denormal. If they are not,! then it's the minimum normalized number, TINY. This fails! much more often than the infinity test above, so it's! disabled for now.! call test_up(0, min)! call test_up(-min, 0)! call test_down(0, -min)! call test_down(min, 0)endsubroutine test_up(s, e) real s, e, x x = nearest(s, 1.0) if (x .ne. e) call abort()endsubroutine test_down(s, e) real s, e, x x = nearest(s, -1.0) if (x .ne. e) call abort()endsubroutine test_n(s1, r) real r, s1, x x = nearest(s1, r) if (nearest(x, -r) .ne. s1) call abort() x = nearest(s1, -r) if (nearest(x, r) .ne. s1) call abort() s1 = -s1 x = nearest(s1, r) if (nearest(x, -r) .ne. s1) call abort() x = nearest(s1, -r) if (nearest(x, r) .ne. s1) call abort()end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -