⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pa32-regs.h

📁 linux下编程用 编译软件
💻 H
字号:
/* Standard register usage.  *//* Number of actual hardware registers.   The hardware registers are assigned numbers for the compiler   from 0 to just below FIRST_PSEUDO_REGISTER.   All registers that the compiler knows about must be given numbers,   even those that are not normally considered general registers.   HP-PA 1.0 has 32 fullword registers and 16 floating point   registers. The floating point registers hold either word or double   word values.   16 additional registers are reserved.   HP-PA 1.1 has 32 fullword registers and 32 floating point   registers. However, the floating point registers behave   differently: the left and right halves of registers are addressable   as 32 bit registers. So, we will set things up like the 68k which   has different fp units: define separate register sets for the 1.0   and 1.1 fp units.  */#define FIRST_PSEUDO_REGISTER 89  /* 32 general regs + 56 fp regs +				     + 1 shift reg *//* 1 for registers that have pervasive standard uses   and are not available for the register allocator.   On the HP-PA, these are:   Reg 0	= 0 (hardware). However, 0 is used for condition code,                  so is not fixed.   Reg 1	= ADDIL target/Temporary (hardware).   Reg 2	= Return Pointer   Reg 3	= Frame Pointer   Reg 4	= Frame Pointer (>8k varying frame with HP compilers only)   Reg 4-18	= Preserved Registers   Reg 19	= Linkage Table Register in HPUX 8.0 shared library scheme.   Reg 20-22	= Temporary Registers   Reg 23-26	= Temporary/Parameter Registers   Reg 27	= Global Data Pointer (hp)   Reg 28	= Temporary/Return Value register   Reg 29	= Temporary/Static Chain/Return Value register #2   Reg 30	= stack pointer   Reg 31	= Temporary/Millicode Return Pointer (hp)   Freg 0-3	= Status Registers	 -- Not known to the compiler.   Freg 4-7	= Arguments/Return Value   Freg 8-11	= Temporary Registers   Freg 12-15	= Preserved Registers   Freg 16-31	= Reserved   On the Snake, fp regs are   Freg 0-3	= Status Registers	-- Not known to the compiler.   Freg 4L-7R	= Arguments/Return Value   Freg 8L-11R	= Temporary Registers   Freg 12L-21R	= Preserved Registers   Freg 22L-31R = Temporary Registers*/#define FIXED_REGISTERS  \ {0, 0, 0, 0, 0, 0, 0, 0, \  0, 0, 0, 0, 0, 0, 0, 0, \  0, 0, 0, 0, 0, 0, 0, 0, \  0, 0, 0, 1, 0, 0, 1, 0, \  /* fp registers */	  \  0, 0, 0, 0, 0, 0, 0, 0, \  0, 0, 0, 0, 0, 0, 0, 0, \  0, 0, 0, 0, 0, 0, 0, 0, \  0, 0, 0, 0, 0, 0, 0, 0, \  0, 0, 0, 0, 0, 0, 0, 0, \  0, 0, 0, 0, 0, 0, 0, 0, \  0, 0, 0, 0, 0, 0, 0, 0, \  0}/* 1 for registers not available across function calls.   These must include the FIXED_REGISTERS and also any   registers that can be used without being saved.   The latter must include the registers where values are returned   and the register where structure-value addresses are passed.   Aside from that, you can include as many other registers as you like.  */#define CALL_USED_REGISTERS  \ {1, 1, 1, 0, 0, 0, 0, 0, \  0, 0, 0, 0, 0, 0, 0, 0, \  0, 0, 0, 1, 1, 1, 1, 1, \  1, 1, 1, 1, 1, 1, 1, 1, \  /* fp registers */	  \  1, 1, 1, 1, 1, 1, 1, 1, \  1, 1, 1, 1, 1, 1, 1, 1, \  0, 0, 0, 0, 0, 0, 0, 0, \  0, 0, 0, 0, 0, 0, 0, 0, \  0, 0, 0, 0, 1, 1, 1, 1, \  1, 1, 1, 1, 1, 1, 1, 1, \  1, 1, 1, 1, 1, 1, 1, 1, \  1}#define CONDITIONAL_REGISTER_USAGE \{						\  int i;					\  if (!TARGET_PA_11)				\    {						\      for (i = 56; i < 88; i++) 		\	fixed_regs[i] = call_used_regs[i] = 1; 	\      for (i = 33; i < 88; i += 2) 		\	fixed_regs[i] = call_used_regs[i] = 1; 	\    }						\  if (TARGET_DISABLE_FPREGS || TARGET_SOFT_FLOAT)\    {						\      for (i = 32; i < 88; i++) 		\	fixed_regs[i] = call_used_regs[i] = 1; 	\    }						\  if (flag_pic)					\    fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;	\}/* Allocate the call used registers first.  This should minimize   the number of registers that need to be saved (as call used   registers will generally not be allocated across a call).   Experimentation has shown slightly better results by allocating   FP registers first.  We allocate the caller-saved registers more   or less in reverse order to their allocation as arguments.   FP registers are ordered so that all L registers are selected before   R registers.  This works around a false dependency interlock on the   PA8000 when accessing the high and low parts of an FP register   independently.  */#define REG_ALLOC_ORDER \ {					\  /* caller-saved fp regs.  */		\  68, 70, 72, 74, 76, 78, 80, 82,	\  84, 86, 40, 42, 44, 46, 38, 36,	\  34, 32,				\  69, 71, 73, 75, 77, 79, 81, 83,	\  85, 87, 41, 43, 45, 47, 39, 37,	\  35, 33,				\  /* caller-saved general regs.  */	\  28, 19, 20, 21, 22, 31, 27, 29,	\  23, 24, 25, 26,  2,			\  /* callee-saved fp regs.  */		\  48, 50, 52, 54, 56, 58, 60, 62,	\  64, 66,				\  49, 51, 53, 55, 57, 59, 61, 63,	\  65, 67,				\  /* callee-saved general regs.  */	\   3,  4,  5,  6,  7,  8,  9, 10, 	\  11, 12, 13, 14, 15, 16, 17, 18,	\  /* special registers.  */		\   1, 30,  0, 88}/* Return number of consecutive hard regs needed starting at reg REGNO   to hold something of mode MODE.   This is ordinarily the length in words of a value of mode MODE   but can be less for certain modes in special long registers.   On the HP-PA, general registers are 32 bits wide.  The floating   point registers are 64 bits wide.  Snake fp regs are treated as   32 bits wide since the left and right parts are independently   accessible.  */#define HARD_REGNO_NREGS(REGNO, MODE)					\  (FP_REGNO_P (REGNO)							\   ? (!TARGET_PA_11							\      ? COMPLEX_MODE_P (MODE) ? 2 : 1					\      : (GET_MODE_SIZE (MODE) + 4 - 1) / 4) 	                        \   : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)/* There are no instructions that use DImode in PA 1.0, so we only   allow it in PA 1.1 and later.  */#define VALID_FP_MODE_P(MODE)						\  ((MODE) == SFmode || (MODE) == DFmode					\   || (MODE) == SCmode || (MODE) == DCmode				\   || (MODE) == QImode || (MODE) == HImode || (MODE) == SImode		\   || (TARGET_PA_11 && (MODE) == DImode))/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.   On the HP-PA, the cpu registers can hold any mode that fits in 32 bits.   For the 64-bit modes, we choose a set of non-overlapping general registers   that includes the incoming arguments and the return value.  We specify a   set with no overlaps so that we don't have to specify that the destination   register is an early clobber in patterns using this mode.  Except for the   return value, the starting registers are odd.  For 128 and 256 bit modes,   we similarly specify non-overlapping sets of cpu registers.  However,   there aren't any patterns defined for modes larger than 64 bits at the   moment.   We limit the modes allowed in the floating point registers to the   set of modes used in the machine definition.  In addition, we allow   the complex modes SCmode and DCmode.  The real and imaginary parts   of complex modes are allocated to separate registers.  This might   allow patterns to be defined in the future to operate on these values.   The PA 2.0 architecture specifies that quad-precision floating-point   values should start on an even floating point register.  Thus, we   choose non-overlapping sets of registers starting on even register   boundaries for large modes.  However, there is currently no support   in the machine definition for modes larger than 64 bits.  TFmode is   supported under HP-UX using libcalls.  Since TFmode values are passed   by reference, they never need to be loaded into the floating-point   registers.  */#define HARD_REGNO_MODE_OK(REGNO, MODE) \  ((REGNO) == 0 ? (MODE) == CCmode || (MODE) == CCFPmode		\   : !TARGET_PA_11 && FP_REGNO_P (REGNO)				\     ? (VALID_FP_MODE_P (MODE)						\	&& (GET_MODE_SIZE (MODE) <= 8					\	    || (GET_MODE_SIZE (MODE) == 16 && ((REGNO) & 3) == 0)))	\   : FP_REGNO_P (REGNO)							\     ? (VALID_FP_MODE_P (MODE)						\	&& (GET_MODE_SIZE (MODE) <= 4					\	    || (GET_MODE_SIZE (MODE) == 8 && ((REGNO) & 1) == 0)	\	    || (GET_MODE_SIZE (MODE) == 16 && ((REGNO) & 3) == 0)	\	    || (GET_MODE_SIZE (MODE) == 32 && ((REGNO) & 7) == 0)))	\   : (GET_MODE_SIZE (MODE) <= UNITS_PER_WORD				\      || (GET_MODE_SIZE (MODE) == 2 * UNITS_PER_WORD			\	  && ((((REGNO) & 1) == 1 && (REGNO) <= 25) || (REGNO) == 28))	\      || (GET_MODE_SIZE (MODE) == 4 * UNITS_PER_WORD			\	  && ((REGNO) & 3) == 3 && (REGNO) <= 23)			\      || (GET_MODE_SIZE (MODE) == 8 * UNITS_PER_WORD			\	  && ((REGNO) & 7) == 3 && (REGNO) <= 19)))/* How to renumber registers for dbx and gdb.   Registers 0  - 31 remain unchanged.   Registers 32 - 87 are mapped to 72 - 127   Register 88 is mapped to 32.  */#define DBX_REGISTER_NUMBER(REGNO) \  ((REGNO) <= 31 ? (REGNO) :						\   ((REGNO) <= 87 ? (REGNO) + 40 : 32))/* We must not use the DBX register numbers for the DWARF 2 CFA column   numbers because that maps to numbers beyond FIRST_PSEUDO_REGISTER.   Instead use the identity mapping.  */#define DWARF_FRAME_REGNUM(REG) REG/* Define the classes of registers for register constraints in the   machine description.  Also define ranges of constants.   One of the classes must always be named ALL_REGS and include all hard regs.   If there is more than one class, another class must be named NO_REGS   and contain no registers.   The name GENERAL_REGS must be the name of a class (or an alias for   another name such as ALL_REGS).  This is the class of registers   that is allowed by "g" or "r" in a register constraint.   Also, registers outside this class are allocated only when   instructions express preferences for them.   The classes must be numbered in nondecreasing order; that is,   a larger-numbered class must never be contained completely   in a smaller-numbered class.   For any two classes, it is very desirable that there be another   class that represents their union.  */  /* The HP-PA has four kinds of registers: general regs, 1.0 fp regs,     1.1 fp regs, and the high 1.1 fp regs, to which the operands of     fmpyadd and fmpysub are restricted.  */enum reg_class { NO_REGS, R1_REGS, GENERAL_REGS, FPUPPER_REGS, FP_REGS,		 GENERAL_OR_FP_REGS, SHIFT_REGS, ALL_REGS, LIM_REG_CLASSES};#define N_REG_CLASSES (int) LIM_REG_CLASSES/* Give names of register classes as strings for dump file.  */#define REG_CLASS_NAMES \  {"NO_REGS", "R1_REGS", "GENERAL_REGS", "FPUPPER_REGS", "FP_REGS", \   "GENERAL_OR_FP_REGS", "SHIFT_REGS", "ALL_REGS"}/* Define which registers fit in which classes.   This is an initializer for a vector of HARD_REG_SET   of length N_REG_CLASSES. Register 0, the "condition code" register,   is in no class.  */#define REG_CLASS_CONTENTS	\ {{0x00000000, 0x00000000, 0x00000000},	/* NO_REGS */			\  {0x00000002, 0x00000000, 0x00000000},	/* R1_REGS */			\  {0xfffffffe, 0x00000000, 0x00000000},	/* GENERAL_REGS */		\  {0x00000000, 0xff000000, 0x00ffffff},	/* FPUPPER_REGS */		\  {0x00000000, 0xffffffff, 0x00ffffff},	/* FP_REGS */			\  {0xfffffffe, 0xffffffff, 0x00ffffff},	/* GENERAL_OR_FP_REGS */	\  {0x00000000, 0x00000000, 0x01000000},	/* SHIFT_REGS */		\  {0xfffffffe, 0xffffffff, 0x01ffffff}}	/* ALL_REGS *//* Return the class number of the smallest class containing   reg number REGNO.  This could be a conditional expression   or could index an array.  */#define REGNO_REG_CLASS(REGNO)						\  ((REGNO) == 0 ? NO_REGS 						\   : (REGNO) == 1 ? R1_REGS						\   : (REGNO) < 32 ? GENERAL_REGS					\   : (REGNO) < 56 ? FP_REGS						\   : (REGNO) < 88 ? FPUPPER_REGS					\   : SHIFT_REGS)/* Get reg_class from a letter such as appears in the machine description.  *//* Keep 'x' for backward compatibility with user asm.  */#define REG_CLASS_FROM_LETTER(C) \  ((C) == 'f' ? FP_REGS :					\   (C) == 'y' ? FPUPPER_REGS :					\   (C) == 'x' ? FP_REGS :					\   (C) == 'q' ? SHIFT_REGS :					\   (C) == 'a' ? R1_REGS :					\   (C) == 'Z' ? ALL_REGS : NO_REGS)/* Return the maximum number of consecutive registers   needed to represent mode MODE in a register of class CLASS.  */#define CLASS_MAX_NREGS(CLASS, MODE)					\  ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS			\   ? (!TARGET_PA_11							\      ? COMPLEX_MODE_P (MODE) ? 2 : 1					\      : (GET_MODE_SIZE (MODE) + 4 - 1) / 4)				\   : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))/* 1 if N is a possible register number for function argument passing.  */#define FUNCTION_ARG_REGNO_P(N) \  (((N) >= 23 && (N) <= 26) || (! TARGET_SOFT_FLOAT && (N) >= 32 && (N) <= 39)) /* How to refer to registers in assembler output.   This sequence is indexed by compiler's hard-register-number (see above).  */#define REGISTER_NAMES \{"%r0",   "%r1",    "%r2",   "%r3",    "%r4",   "%r5",    "%r6",   "%r7",    \ "%r8",   "%r9",    "%r10",  "%r11",   "%r12",  "%r13",   "%r14",  "%r15",   \ "%r16",  "%r17",   "%r18",  "%r19",   "%r20",  "%r21",   "%r22",  "%r23",   \ "%r24",  "%r25",   "%r26",  "%r27",   "%r28",  "%r29",   "%r30",  "%r31",   \ "%fr4",  "%fr4R",  "%fr5",  "%fr5R",  "%fr6",  "%fr6R",  "%fr7",  "%fr7R",  \ "%fr8",  "%fr8R",  "%fr9",  "%fr9R",  "%fr10", "%fr10R", "%fr11", "%fr11R", \ "%fr12", "%fr12R", "%fr13", "%fr13R", "%fr14", "%fr14R", "%fr15", "%fr15R", \ "%fr16", "%fr16R", "%fr17", "%fr17R", "%fr18", "%fr18R", "%fr19", "%fr19R", \ "%fr20", "%fr20R", "%fr21", "%fr21R", "%fr22", "%fr22R", "%fr23", "%fr23R", \ "%fr24", "%fr24R", "%fr25", "%fr25R", "%fr26", "%fr26R", "%fr27", "%fr27R", \ "%fr28", "%fr28R", "%fr29", "%fr29R", "%fr30", "%fr30R", "%fr31", "%fr31R", \ "SAR"}#define ADDITIONAL_REGISTER_NAMES \{{"%fr4L",32}, {"%fr5L",34}, {"%fr6L",36}, {"%fr7L",38},		\ {"%fr8L",40}, {"%fr9L",42}, {"%fr10L",44}, {"%fr11L",46},		\ {"%fr12L",48}, {"%fr13L",50}, {"%fr14L",52}, {"%fr15L",54},		\ {"%fr16L",56}, {"%fr17L",58}, {"%fr18L",60}, {"%fr19L",62},		\ {"%fr20L",64}, {"%fr21L",66}, {"%fr22L",68}, {"%fr23L",70},		\ {"%fr24L",72}, {"%fr25L",74}, {"%fr26L",76}, {"%fr27L",78},		\ {"%fr28L",80}, {"%fr29L",82}, {"%fr30L",84}, {"%fr31R",86},		\ {"%cr11",88}}#define FP_SAVED_REG_LAST 66#define FP_SAVED_REG_FIRST 48#define FP_REG_STEP 2#define FP_REG_FIRST 32#define FP_REG_LAST 87

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -