⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 arm1020e.md

📁 linux下编程用 编译软件
💻 MD
字号:
;; ARM 1020E & ARM 1022E Pipeline Description;; Copyright (C) 2005 Free Software Foundation, Inc.;; Contributed by Richard Earnshaw (richard.earnshaw@arm.com);;;; This file is part of GCC.;;;; GCC is free software; you can redistribute it and/or modify it;; under the terms of the GNU General Public License as published by;; the Free Software Foundation; either version 2, or (at your option);; any later version.;;;; GCC is distributed in the hope that it will be useful, but;; WITHOUT ANY WARRANTY; without even the implied warranty of;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU;; General Public License for more details.;;;; You should have received a copy of the GNU General Public License;; along with GCC; see the file COPYING.  If not, write to the Free;; Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA;; 02110-1301, USA.  */;; These descriptions are based on the information contained in the;; ARM1020E Technical Reference Manual, Copyright (c) 2003 ARM;; Limited.;;;; This automaton provides a pipeline description for the ARM;; 1020E core.;;;; The model given here assumes that the condition for all conditional;; instructions is "true", i.e., that all of the instructions are;; actually executed.(define_automaton "arm1020e");;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Pipelines;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; There are two pipelines:;; ;; - An Arithmetic Logic Unit (ALU) pipeline.;;;;   The ALU pipeline has fetch, issue, decode, execute, memory, and;;   write stages. We only need to model the execute, memory and write;;   stages.;;;; - A Load-Store Unit (LSU) pipeline.;;;;   The LSU pipeline has decode, execute, memory, and write stages.;;   We only model the execute, memory and write stages.(define_cpu_unit "1020a_e,1020a_m,1020a_w" "arm1020e")(define_cpu_unit "1020l_e,1020l_m,1020l_w" "arm1020e");;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ALU Instructions;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ALU instructions require three cycles to execute, and use the ALU;; pipeline in each of the three stages.  The results are available;; after the execute stage stage has finished.;;;; If the destination register is the PC, the pipelines are stalled;; for several cycles.  That case is not modeled here.;; ALU operations with no shifted operand(define_insn_reservation "1020alu_op" 1  (and (eq_attr "tune" "arm1020e,arm1022e")      (eq_attr "type" "alu")) "1020a_e,1020a_m,1020a_w");; ALU operations with a shift-by-constant operand(define_insn_reservation "1020alu_shift_op" 1  (and (eq_attr "tune" "arm1020e,arm1022e")      (eq_attr "type" "alu_shift")) "1020a_e,1020a_m,1020a_w");; ALU operations with a shift-by-register operand;; These really stall in the decoder, in order to read;; the shift value in a second cycle. Pretend we take two cycles in;; the execute stage.(define_insn_reservation "1020alu_shift_reg_op" 2  (and (eq_attr "tune" "arm1020e,arm1022e")      (eq_attr "type" "alu_shift_reg")) "1020a_e*2,1020a_m,1020a_w");;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Multiplication Instructions;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Multiplication instructions loop in the execute stage until the;; instruction has been passed through the multiplier array enough;; times.;; The result of the "smul" and "smulw" instructions is not available;; until after the memory stage.(define_insn_reservation "1020mult1" 2 (and (eq_attr "tune" "arm1020e,arm1022e")      (eq_attr "insn" "smulxy,smulwy")) "1020a_e,1020a_m,1020a_w");; The "smlaxy" and "smlawx" instructions require two iterations through;; the execute stage; the result is available immediately following;; the execute stage.(define_insn_reservation "1020mult2" 2 (and (eq_attr "tune" "arm1020e,arm1022e")      (eq_attr "insn" "smlaxy,smlalxy,smlawx")) "1020a_e*2,1020a_m,1020a_w");; The "smlalxy", "mul", and "mla" instructions require two iterations;; through the execute stage; the result is not available until after;; the memory stage.(define_insn_reservation "1020mult3" 3 (and (eq_attr "tune" "arm1020e,arm1022e")      (eq_attr "insn" "smlalxy,mul,mla")) "1020a_e*2,1020a_m,1020a_w");; The "muls" and "mlas" instructions loop in the execute stage for;; four iterations in order to set the flags.  The value result is;; available after three iterations.(define_insn_reservation "1020mult4" 3 (and (eq_attr "tune" "arm1020e,arm1022e")      (eq_attr "insn" "muls,mlas")) "1020a_e*4,1020a_m,1020a_w");; Long multiply instructions that produce two registers of;; output (such as umull) make their results available in two cycles;;; the least significant word is available before the most significant;; word.  That fact is not modeled; instead, the instructions are;; described.as if the entire result was available at the end of the;; cycle in which both words are available.;; The "umull", "umlal", "smull", and "smlal" instructions all take;; three iterations through the execute cycle, and make their results;; available after the memory cycle.(define_insn_reservation "1020mult5" 4 (and (eq_attr "tune" "arm1020e,arm1022e")      (eq_attr "insn" "umull,umlal,smull,smlal")) "1020a_e*3,1020a_m,1020a_w");; The "umulls", "umlals", "smulls", and "smlals" instructions loop in;; the execute stage for five iterations in order to set the flags.;; The value result is available after four iterations.(define_insn_reservation "1020mult6" 4 (and (eq_attr "tune" "arm1020e,arm1022e")      (eq_attr "insn" "umulls,umlals,smulls,smlals")) "1020a_e*5,1020a_m,1020a_w");;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Load/Store Instructions;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; The models for load/store instructions do not accurately describe;; the difference between operations with a base register writeback;; (such as "ldm!").  These models assume that all memory references;; hit in dcache.;; LSU instructions require six cycles to execute.  They use the ALU;; pipeline in all but the 5th cycle, and the LSU pipeline in cycles;; three through six.;; Loads and stores which use a scaled register offset or scaled;; register pre-indexed addressing mode take three cycles EXCEPT for;; those that are base + offset with LSL of 0 or 2, or base - offset;; with LSL of zero.  The remainder take 1 cycle to execute.;; For 4byte loads there is a bypass from the load stage(define_insn_reservation "1020load1_op" 2 (and (eq_attr "tune" "arm1020e,arm1022e")      (eq_attr "type" "load_byte,load1")) "1020a_e+1020l_e,1020l_m,1020l_w")(define_insn_reservation "1020store1_op" 0 (and (eq_attr "tune" "arm1020e,arm1022e")      (eq_attr "type" "store1")) "1020a_e+1020l_e,1020l_m,1020l_w");; A load's result can be stored by an immediately following store(define_bypass 1 "1020load1_op" "1020store1_op" "arm_no_early_store_addr_dep");; On a LDM/STM operation, the LSU pipeline iterates until all of the;; registers have been processed.;;;; The time it takes to load the data depends on whether or not the;; base address is 64-bit aligned; if it is not, an additional cycle;; is required.  This model assumes that the address is always 64-bit;; aligned.  Because the processor can load two registers per cycle,;; that assumption means that we use the same instruction reservations;; for loading 2k and 2k - 1 registers.;;;; The ALU pipeline is decoupled after the first cycle unless there is;; a register dependency; the dependency is cleared as soon as the LDM/STM;; has dealt with the corresponding register.  So for example,;;  stmia sp, {r0-r3};;  add	r0, r0, #4;; will have one fewer stalls than;;  stmia sp, {r0-r3};;  add r3, r3, #4;;;; As with ALU operations, if one of the destination registers is the;; PC, there are additional stalls; that is not modeled.(define_insn_reservation "1020load2_op" 2 (and (eq_attr "tune" "arm1020e,arm1022e")      (eq_attr "type" "load2")) "1020a_e+1020l_e,1020l_m,1020l_w")(define_insn_reservation "1020store2_op" 0 (and (eq_attr "tune" "arm1020e,arm1022e")      (eq_attr "type" "store2")) "1020a_e+1020l_e,1020l_m,1020l_w")(define_insn_reservation "1020load34_op" 3 (and (eq_attr "tune" "arm1020e,arm1022e")      (eq_attr "type" "load3,load4")) "1020a_e+1020l_e,1020l_e+1020l_m,1020l_m,1020l_w")(define_insn_reservation "1020store34_op" 0 (and (eq_attr "tune" "arm1020e,arm1022e")      (eq_attr "type" "store3,store4")) "1020a_e+1020l_e,1020l_e+1020l_m,1020l_m,1020l_w");;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Branch and Call Instructions;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Branch instructions are difficult to model accurately.  The ARM;; core can predict most branches.  If the branch is predicted;; correctly, and predicted early enough, the branch can be completely;; eliminated from the instruction stream.  Some branches can;; therefore appear to require zero cycles to execute.  We assume that;; all branches are predicted correctly, and that the latency is;; therefore the minimum value.(define_insn_reservation "1020branch_op" 0 (and (eq_attr "tune" "arm1020e,arm1022e")      (eq_attr "type" "branch")) "1020a_e");; The latency for a call is not predictable.  Therefore, we use 32 as;; roughly equivalent to positive infinity.(define_insn_reservation "1020call_op" 32 (and (eq_attr "tune" "arm1020e,arm1022e")      (eq_attr "type" "call")) "1020a_e*32");;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; VFP;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;(define_cpu_unit "v10_fmac" "arm1020e")(define_cpu_unit "v10_ds" "arm1020e")(define_cpu_unit "v10_fmstat" "arm1020e")(define_cpu_unit "v10_ls1,v10_ls2,v10_ls3" "arm1020e");; fmstat is a serializing instruction.  It will stall the core until;; the mac and ds units have completed.(exclusion_set "v10_fmac,v10_ds" "v10_fmstat")(define_attr "vfp10" "yes,no"   (const (if_then_else (and (eq_attr "tune" "arm1020e,arm1022e")			    (eq_attr "fpu" "vfp"))		       (const_string "yes") (const_string "no"))));; The VFP "type" attributes differ from those used in the FPA model.;; ffarith	Fast floating point insns, e.g. abs, neg, cpy, cmp.;; farith	Most arithmetic insns.;; fmul		Double precision multiply.;; fdivs	Single precision sqrt or division.;; fdivd	Double precision sqrt or division.;; f_flag	fmstat operation;; f_load	Floating point load from memory.;; f_store	Floating point store to memory.;; f_2_r	Transfer vfp to arm reg.;; r_2_f	Transfer arm to vfp reg.;; Note, no instruction can issue to the VFP if the core is stalled in the;; first execute state.  We model this by using 1020a_e in the first cycle.(define_insn_reservation "v10_ffarith" 5 (and (eq_attr "vfp10" "yes")      (eq_attr "type" "ffarith")) "1020a_e+v10_fmac")(define_insn_reservation "v10_farith" 5 (and (eq_attr "vfp10" "yes")      (eq_attr "type" "farith")) "1020a_e+v10_fmac")(define_insn_reservation "v10_cvt" 5 (and (eq_attr "vfp10" "yes")      (eq_attr "type" "f_cvt")) "1020a_e+v10_fmac")(define_insn_reservation "v10_fmul" 6 (and (eq_attr "vfp10" "yes")      (eq_attr "type" "fmul")) "1020a_e+v10_fmac*2")(define_insn_reservation "v10_fdivs" 18 (and (eq_attr "vfp10" "yes")      (eq_attr "type" "fdivs")) "1020a_e+v10_ds*14")(define_insn_reservation "v10_fdivd" 32 (and (eq_attr "vfp10" "yes")      (eq_attr "type" "fdivd")) "1020a_e+v10_fmac+v10_ds*28")(define_insn_reservation "v10_floads" 4 (and (eq_attr "vfp10" "yes")      (eq_attr "type" "f_loads")) "1020a_e+1020l_e+v10_ls1,v10_ls2");; We model a load of a double as needing all the vfp ls* stage in cycle 1.;; This gives the correct mix between single-and double loads where a flds;; followed by and fldd will stall for one cycle, but two back-to-back fldd;; insns stall for two cycles.(define_insn_reservation "v10_floadd" 5 (and (eq_attr "vfp10" "yes")      (eq_attr "type" "f_loadd")) "1020a_e+1020l_e+v10_ls1+v10_ls2+v10_ls3,v10_ls2+v10_ls3,v10_ls3") ;; Moves to/from arm regs also use the load/store pipeline.(define_insn_reservation "v10_c2v" 4 (and (eq_attr "vfp10" "yes")      (eq_attr "type" "r_2_f")) "1020a_e+1020l_e+v10_ls1,v10_ls2")(define_insn_reservation "v10_fstores" 1 (and (eq_attr "vfp10" "yes")      (eq_attr "type" "f_stores")) "1020a_e+1020l_e+v10_ls1,v10_ls2")(define_insn_reservation "v10_fstored" 1 (and (eq_attr "vfp10" "yes")      (eq_attr "type" "f_stored")) "1020a_e+1020l_e+v10_ls1+v10_ls2+v10_ls3,v10_ls2+v10_ls3,v10_ls3")(define_insn_reservation "v10_v2c" 1 (and (eq_attr "vfp10" "yes")      (eq_attr "type" "f_2_r")) "1020a_e+1020l_e,1020l_m,1020l_w")(define_insn_reservation "v10_to_cpsr" 2 (and (eq_attr "vfp10" "yes")      (eq_attr "type" "f_flag")) "1020a_e+v10_fmstat,1020a_e+1020l_e,1020l_m,1020l_w");; VFP bypasses;; There are bypasses for most operations other than store(define_bypass 3 "v10_c2v,v10_floads" "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd,v10_cvt")(define_bypass 4 "v10_floadd" "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd");; Arithmetic to other arithmetic saves a cycle due to forwarding(define_bypass 4 "v10_ffarith,v10_farith" "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")(define_bypass 5 "v10_fmul" "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")(define_bypass 17 "v10_fdivs" "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")(define_bypass 31 "v10_fdivd" "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd");; VFP anti-dependencies.;; There is one anti-dependence in the following case (not yet modelled):;; - After a store: one extra cycle for both fsts and fstd;; Note, back-to-back fstd instructions will overload the load/store datapath ;; causing a two-cycle stall.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -