⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lib1funcs.asm

📁 linux下编程用 编译软件
💻 ASM
📖 第 1 页 / 共 5 页
字号:
	shlri r6,49,r5	movi 0xffffffffffffbaf1,r21 /* .l shift count 17.  */	sub r21,r5,r1	mmulfx.w r1,r1,r4	mshflo.w r1,r63,r1	sub r63,r22,r20 // r63 == 64 % 64	mmulfx.w r5,r4,r4	pta LOCAL(large_divisor),tr0	addi r20,32,r9	msub.w r1,r4,r1	madd.w r1,r1,r1	mmulfx.w r1,r1,r4	shlri r6,32,r7	bgt/u r9,r63,tr0 // large_divisor	mmulfx.w r5,r4,r4	shlri r2,32+14,r19	addi r22,-31,r0	msub.w r1,r4,r1	mulu.l r1,r7,r4	addi r1,-3,r5	mulu.l r5,r19,r5	sub r63,r4,r4 // Negate to make sure r1 ends up <= 1/r2	shlri r4,2,r4 /* chop off leading %0000000000000000 001.00000000000 - or, as	                 the case may be, %0000000000000000 000.11111111111, still */	muls.l r1,r4,r4 /* leaving at least one sign bit.  */	mulu.l r5,r3,r8	mshalds.l r1,r21,r1	shari r4,26,r4	shlld r8,r0,r8	add r1,r4,r1 // 31 bit unsigned reciprocal now in r1 (msb equiv. 0.5)	sub r2,r8,r2	/* Can do second step of 64 : 32 div now, using r1 and the rest in r2.  */	shlri r2,22,r21	mulu.l r21,r1,r21	shlld r5,r0,r8	addi r20,30-22,r0	shlrd r21,r0,r21	mulu.l r21,r3,r5	add r8,r21,r8	mcmpgt.l r21,r63,r21 // See Note 1	addi r20,30,r0	mshfhi.l r63,r21,r21	sub r2,r5,r2	andc r2,r21,r2	/* small divisor: need a third divide step */	mulu.l r2,r1,r7	ptabs r18,tr0	addi r2,1,r2	shlrd r7,r0,r7	mulu.l r7,r3,r5	add r8,r7,r8	sub r2,r3,r2	cmpgt r2,r5,r5	add r8,r5,r2	/* could test r3 here to check for divide by zero.  */	blink tr0,r63LOCAL(large_divisor):	mmulfx.w r5,r4,r4	shlrd r2,r9,r25	shlri r25,32,r8	msub.w r1,r4,r1	mulu.l r1,r7,r4	addi r1,-3,r5	mulu.l r5,r8,r5	sub r63,r4,r4 // Negate to make sure r1 ends up <= 1/r2	shlri r4,2,r4 /* chop off leading %0000000000000000 001.00000000000 - or, as	                 the case may be, %0000000000000000 000.11111111111, still */	muls.l r1,r4,r4 /* leaving at least one sign bit.  */	shlri r5,14-1,r8	mulu.l r8,r7,r5	mshalds.l r1,r21,r1	shari r4,26,r4	add r1,r4,r1 // 31 bit unsigned reciprocal now in r1 (msb equiv. 0.5)	sub r25,r5,r25	/* Can do second step of 64 : 32 div now, using r1 and the rest in r25.  */	shlri r25,22,r21	mulu.l r21,r1,r21	pta LOCAL(no_lo_adj),tr0	addi r22,32,r0	shlri r21,40,r21	mulu.l r21,r7,r5	add r8,r21,r8	shlld r2,r0,r2	sub r25,r5,r25	bgtu/u r7,r25,tr0 // no_lo_adj	addi r8,1,r8	sub r25,r7,r25LOCAL(no_lo_adj):	mextr4 r2,r25,r2	/* large_divisor: only needs a few adjustments.  */	mulu.l r8,r6,r5	ptabs r18,tr0	/* bubble */	cmpgtu r5,r2,r5	sub r8,r5,r2	blink tr0,r63	ENDFUNC(GLOBAL(udivdi3))/* Note 1: To shift the result of the second divide stage so that the result   always fits into 32 bits, yet we still reduce the rest sufficiently   would require a lot of instructions to do the shifts just right.  Using   the full 64 bit shift result to multiply with the divisor would require   four extra instructions for the upper 32 bits (shift / mulu / shift / sub).   Fortunately, if the upper 32 bits of the shift result are nonzero, we   know that the rest after taking this partial result into account will   fit into 32 bits.  So we just clear the upper 32 bits of the rest if the   upper 32 bits of the partial result are nonzero.  */#endif /* __SHMEDIA__ */#endif /* L_udivdi3 */#ifdef L_divdi3#ifdef __SHMEDIA__	.mode	SHmedia	.section	.text..SHmedia32,"ax"	.align	2	.global	GLOBAL(divdi3)	FUNC(GLOBAL(divdi3))GLOBAL(divdi3):	pta GLOBAL(udivdi3_internal),tr0	shari r2,63,r22	shari r3,63,r23	xor r2,r22,r2	xor r3,r23,r3	sub r2,r22,r2	sub r3,r23,r3	beq/u r22,r23,tr0	ptabs r18,tr1	blink tr0,r18	sub r63,r2,r2	blink tr1,r63	ENDFUNC(GLOBAL(divdi3))#endif /* __SHMEDIA__ */#endif /* L_divdi3 */#ifdef L_umoddi3#ifdef __SHMEDIA__	.mode	SHmedia	.section	.text..SHmedia32,"ax"	.align	2	.global	GLOBAL(umoddi3)	FUNC(GLOBAL(umoddi3))GLOBAL(umoddi3):	HIDDEN_ALIAS(umoddi3_internal,umoddi3)	shlri r3,1,r4	nsb r4,r22	shlld r3,r22,r6	shlri r6,49,r5	movi 0xffffffffffffbaf1,r21 /* .l shift count 17.  */	sub r21,r5,r1	mmulfx.w r1,r1,r4	mshflo.w r1,r63,r1	sub r63,r22,r20 // r63 == 64 % 64	mmulfx.w r5,r4,r4	pta LOCAL(large_divisor),tr0	addi r20,32,r9	msub.w r1,r4,r1	madd.w r1,r1,r1	mmulfx.w r1,r1,r4	shlri r6,32,r7	bgt/u r9,r63,tr0 // large_divisor	mmulfx.w r5,r4,r4	shlri r2,32+14,r19	addi r22,-31,r0	msub.w r1,r4,r1	mulu.l r1,r7,r4	addi r1,-3,r5	mulu.l r5,r19,r5	sub r63,r4,r4 // Negate to make sure r1 ends up <= 1/r2	shlri r4,2,r4 /* chop off leading %0000000000000000 001.00000000000 - or, as	                 the case may be, %0000000000000000 000.11111111111, still */	muls.l r1,r4,r4 /* leaving at least one sign bit.  */	mulu.l r5,r3,r5	mshalds.l r1,r21,r1	shari r4,26,r4	shlld r5,r0,r5	add r1,r4,r1 // 31 bit unsigned reciprocal now in r1 (msb equiv. 0.5)	sub r2,r5,r2	/* Can do second step of 64 : 32 div now, using r1 and the rest in r2.  */	shlri r2,22,r21	mulu.l r21,r1,r21	addi r20,30-22,r0	/* bubble */ /* could test r3 here to check for divide by zero.  */	shlrd r21,r0,r21	mulu.l r21,r3,r5	mcmpgt.l r21,r63,r21 // See Note 1	addi r20,30,r0	mshfhi.l r63,r21,r21	sub r2,r5,r2	andc r2,r21,r2	/* small divisor: need a third divide step */	mulu.l r2,r1,r7	ptabs r18,tr0	sub r2,r3,r8 /* re-use r8 here for rest - r3 */	shlrd r7,r0,r7	mulu.l r7,r3,r5	/* bubble */	addi r8,1,r7	cmpgt r7,r5,r7	cmvne r7,r8,r2	sub r2,r5,r2	blink tr0,r63LOCAL(large_divisor):	mmulfx.w r5,r4,r4	shlrd r2,r9,r25	shlri r25,32,r8	msub.w r1,r4,r1	mulu.l r1,r7,r4	addi r1,-3,r5	mulu.l r5,r8,r5	sub r63,r4,r4 // Negate to make sure r1 ends up <= 1/r2	shlri r4,2,r4 /* chop off leading %0000000000000000 001.00000000000 - or, as	                 the case may be, %0000000000000000 000.11111111111, still */	muls.l r1,r4,r4 /* leaving at least one sign bit.  */	shlri r5,14-1,r8	mulu.l r8,r7,r5	mshalds.l r1,r21,r1	shari r4,26,r4	add r1,r4,r1 // 31 bit unsigned reciprocal now in r1 (msb equiv. 0.5)	sub r25,r5,r25	/* Can do second step of 64 : 32 div now, using r1 and the rest in r25.  */	shlri r25,22,r21	mulu.l r21,r1,r21	pta LOCAL(no_lo_adj),tr0	addi r22,32,r0	shlri r21,40,r21	mulu.l r21,r7,r5	add r8,r21,r8	shlld r2,r0,r2	sub r25,r5,r25	bgtu/u r7,r25,tr0 // no_lo_adj	addi r8,1,r8	sub r25,r7,r25LOCAL(no_lo_adj):	mextr4 r2,r25,r2	/* large_divisor: only needs a few adjustments.  */	mulu.l r8,r6,r5	ptabs r18,tr0	add r2,r6,r7	cmpgtu r5,r2,r8	cmvne r8,r7,r2	sub r2,r5,r2	shlrd r2,r22,r2	blink tr0,r63	ENDFUNC(GLOBAL(umoddi3))/* Note 1: To shift the result of the second divide stage so that the result   always fits into 32 bits, yet we still reduce the rest sufficiently   would require a lot of instructions to do the shifts just right.  Using   the full 64 bit shift result to multiply with the divisor would require   four extra instructions for the upper 32 bits (shift / mulu / shift / sub).   Fortunately, if the upper 32 bits of the shift result are nonzero, we   know that the rest after taking this partial result into account will   fit into 32 bits.  So we just clear the upper 32 bits of the rest if the   upper 32 bits of the partial result are nonzero.  */#endif /* __SHMEDIA__ */#endif /* L_umoddi3 */#ifdef L_moddi3#ifdef __SHMEDIA__	.mode	SHmedia	.section	.text..SHmedia32,"ax"	.align	2	.global	GLOBAL(moddi3)	FUNC(GLOBAL(moddi3))GLOBAL(moddi3):	pta GLOBAL(umoddi3_internal),tr0	shari r2,63,r22	shari r3,63,r23	xor r2,r22,r2	xor r3,r23,r3	sub r2,r22,r2	sub r3,r23,r3	beq/u r22,r63,tr0	ptabs r18,tr1	blink tr0,r18	sub r63,r2,r2	blink tr1,r63	ENDFUNC(GLOBAL(moddi3))#endif /* __SHMEDIA__ */#endif /* L_moddi3 */#ifdef L_set_fpscr#if !defined (__SH2A_NOFPU__)#if defined (__SH2E__) || defined (__SH2A__) || defined (__SH3E__) || defined(__SH4_SINGLE__) || defined(__SH4__) || defined(__SH4_SINGLE_ONLY__) || __SH5__ == 32#ifdef __SH5__	.mode	SHcompact#endif	.global GLOBAL(set_fpscr)	HIDDEN_FUNC(GLOBAL(set_fpscr))GLOBAL(set_fpscr):	lds r4,fpscr#ifdef __PIC__	mov.l	r12,@-r15	mova	LOCAL(set_fpscr_L0),r0	mov.l	LOCAL(set_fpscr_L0),r12	add	r0,r12	mov.l	LOCAL(set_fpscr_L1),r0	mov.l	@(r0,r12),r1	mov.l	@r15+,r12#else	mov.l LOCAL(set_fpscr_L1),r1#endif	swap.w r4,r0	or #24,r0#ifndef FMOVD_WORKS	xor #16,r0#endif#if defined(__SH4__) || defined (__SH2A_DOUBLE__)	swap.w r0,r3	mov.l r3,@(4,r1)#else /* defined (__SH2E__) || defined(__SH3E__) || defined(__SH4_SINGLE*__) */	swap.w r0,r2	mov.l r2,@r1#endif#ifndef FMOVD_WORKS	xor #8,r0#else	xor #24,r0#endif#if defined(__SH4__) || defined (__SH2A_DOUBLE__)	swap.w r0,r2	rts	mov.l r2,@r1#else /* defined(__SH2E__) || defined(__SH3E__) || defined(__SH4_SINGLE*__) */	swap.w r0,r3	rts	mov.l r3,@(4,r1)#endif	.align 2#ifdef __PIC__LOCAL(set_fpscr_L0):	.long _GLOBAL_OFFSET_TABLE_LOCAL(set_fpscr_L1):	.long GLOBAL(fpscr_values@GOT)#elseLOCAL(set_fpscr_L1):	.long GLOBAL(fpscr_values)#endif	ENDFUNC(GLOBAL(set_fpscr))#ifndef NO_FPSCR_VALUES#ifdef __ELF__        .comm   GLOBAL(fpscr_values),8,4#else        .comm   GLOBAL(fpscr_values),8#endif /* ELF */#endif /* NO_FPSCR_VALUES */#endif /* SH2E / SH3E / SH4 */#endif /* __SH2A_NOFPU__ */#endif /* L_set_fpscr */#ifdef L_ic_invalidate#if __SH5__ == 32	.mode	SHmedia	.section	.text..SHmedia32,"ax"	.align	2	.global	GLOBAL(init_trampoline)	HIDDEN_FUNC(GLOBAL(init_trampoline))GLOBAL(init_trampoline):	st.l	r0,8,r2#ifdef __LITTLE_ENDIAN__	movi	9,r20	shori	0x402b,r20	shori	0xd101,r20	shori	0xd002,r20#else	movi	0xffffffffffffd002,r20	shori	0xd101,r20	shori	0x402b,r20	shori	9,r20#endif	st.q	r0,0,r20	st.l	r0,12,r3	ENDFUNC(GLOBAL(init_trampoline))	.global	GLOBAL(ic_invalidate)	HIDDEN_FUNC(GLOBAL(ic_invalidate))GLOBAL(ic_invalidate):	ocbwb	r0,0	synco	icbi	r0, 0	ptabs	r18, tr0	synci	blink	tr0, r63	ENDFUNC(GLOBAL(ic_invalidate))#elif defined(__SH4A__)	.global GLOBAL(ic_invalidate)	HIDDEN_FUNC(GLOBAL(ic_invalidate))GLOBAL(ic_invalidate):	ocbwb	@r4	synco	rts	icbi	@r4	ENDFUNC(GLOBAL(ic_invalidate))#elif defined(__SH4_SINGLE__) || defined(__SH4__) || defined(__SH4_SINGLE_ONLY__) || (defined(__SH4_NOFPU__) && !defined(__SH5__))	/* For system code, we use ic_invalidate_line_i, but user code	   needs a different mechanism.  A kernel call is generally not	   available, and it would also be slow.  Different SH4 variants use	   different sizes and associativities of the Icache.  We use a small	   bit of dispatch code that can be put hidden in every shared object,	   which calls the actual processor-specific invalidation code in a	   separate module.	   Or if you have operating system support, the OS could mmap the	   procesor-specific code from a single page, since it is highly	   repetitive.  */	.global GLOBAL(ic_invalidate)	HIDDEN_FUNC(GLOBAL(ic_invalidate))GLOBAL(ic_invalidate):	mov.l	0f,r1#ifdef __pic__	mova	0f,r0	mov.l	1f,r2	add	r1,r0	mov.l	@(r0,r2),r1#endif	ocbwb	@r4	mov.l	@(8,r1),r0	sub	r1,r4	and	r4,r0	add	r1,r0	jmp	@r0	mov.l	@(4,r1),r0#ifndef __pic__0:	.long   GLOBAL(ic_invalidate_array)#else /* __pic__ */	.global GLOBAL(ic_invalidate_array)	/* ??? Why won't the assembler allow to add these two constants?  */0:	.long   _GLOBAL_OFFSET_TABLE_1:	.long   GLOBAL(ic_invalidate_array)@GOT	ENDFUNC(GLOBAL(ic_invalidate))#endif /* __pic__ */#endif /* SH4 */#endif /* L_ic_invalidate */#ifdef L_ic_invalidate_array#if defined(__SH4A__)	/* This is needed when an SH4 dso with trampolines is used on SH4A.  */	.global GLOBAL(ic_invalidate_array)	FUNC(GLOBAL(ic_invalidate_array))GLOBAL(ic_invalidate_array):	add	r1,r4	synco	rts	icbi	@r4	.long	0	ENDFUNC(GLOBAL(ic_invalidate_array))#elif defined(__SH4_SINGLE__) || defined(__SH4__) || defined(__SH4_SINGLE_ONLY__) || (defined(__SH4_NOFPU__) && !defined(__SH5__))	.global GLOBAL(ic_invalidate_array)	.p2align 5	FUNC(GLOBAL(ic_invalidate_array))/* This must be aligned to the beginning of a cache line.  */GLOBAL(ic_invalidate_array):#ifndef WAYS#define WAYS 4#define WAY_SIZE 0x4000#endif#if WAYS == 1	.rept	WAY_SIZE * WAYS / 32	rts	nop	.rept	7	.long	WAY_SIZE - 32	.endr	.endr#elif WAYS <= 6	.rept	WAY_SIZE * WAYS / 32	braf	r0	add	#-8,r0	.long	WAY_SIZE + 8	.long	WAY_SIZE - 32	.rept	WAYS-2	braf	r0	nop	.endr	.rept	7 - WAYS	rts	nop	.endr	.endr#else /* WAYS > 6 */	/* This variant needs two different pages for mmap-ing.  */ 	.rept	WAYS-1	.rept	WAY_SIZE / 32	braf	r0	nop	.long	WAY_SIZE	.rept 6	.long	WAY_SIZE - 32	.endr	.endr	.endr	.rept	WAY_SIZE / 32	rts	.rept	15	nop	.endr	.endr#endif /* WAYS */	ENDFUNC(GLOBAL(ic_invalidate_array))#endif /* SH4 */#endif /* L_ic_invalidate_array */#if defined (__SH5__) && __SH5__ == 32#ifdef L_shcompact_call_trampoline	.section	.rodata	.align	1LOCAL(ct_main_table):.word	LOCAL(ct_r2_fp) - datalabel LOCAL(ct_main_label).word	LOCAL(ct_r2_ld) - datalabel LOCAL(ct_main_label).word	LOCAL(ct_r2_pop) - datalabel LOCAL(ct_main_label).word	LOCAL(ct_r3_fp) - datalabel LOCAL(ct_main_label).word	LOCAL(ct_r3_ld) - datalabel LOCAL(ct_main_label).word	LOCAL(ct_r3_pop) - datalabel LOCAL(ct_main_label).word	LOCAL(ct_r4_fp) - datalabel LOCAL(ct_main_label).word	LOCAL(ct_r4_ld) - datalabel LOCAL(ct_main_label).word	LOCAL(ct_r4_pop) - datalabel LOCAL(ct_main_label).word	LOCAL(ct_r5_fp) - datalabel LOCAL(ct_main_label).word	LOCAL(ct_r5_ld) - datalabel LOCAL(ct_main_label).word	LOCAL(ct_r5_pop) - datalabel LOCAL(ct_main_label).word	LOCAL(ct_r6_fph) - datalabel LOCAL(ct_main_label).word	LOCAL(ct_r6_fpl) - datalabel LOCAL(ct_main_label).word	LOCAL(ct_r6_ld) - datalabel LOCAL(ct_main_label).word	LOCAL(ct_r6_pop) - datalabel LOCAL(ct_main_label).word	LOCAL(ct_r7_fph) - datalabel LOCAL(ct_main_label).word	LOCAL(ct_r7_fpl) - datalabel LOCAL(ct_main_label).word	LOCAL(ct_r7_ld) - datalabel LOCAL(ct_main_label).word	LOCAL(ct_r7_pop) - datalabel LOCAL(ct_main_label).word	LOCAL(ct_r8_fph) - datalabel LOCAL(ct_main_label).word	LOCAL(ct_r8_fpl) - datalabel LOCAL(ct_main_label).word	LOCAL(ct_r8_ld) - datalabel LOCAL(ct_main_label).word	LOCAL(ct_r8_pop) - datalabel LOCAL(ct_main_label).word	LOCAL(ct_r9_fph) - datalabel LOCAL(ct_main_label).word	LOCAL(ct_r9_fpl) - datalabel LOCAL(ct_main_label).word	LOCAL(ct_r9_ld) - datalabel LOCAL(ct_main_label).word	LOCAL(ct_r9_pop) - datalabel LOCAL(ct_main_label).word	LOCAL(ct_pop_seq) - datalabel LOCAL(ct_main_label).word	LOCAL(ct_pop_seq) - datalabel LOCAL(ct_main_label).word	LOCAL(ct_r9_pop) - datalabel LOCAL(ct_main_label).word	LOCAL(ct_ret_wide) - datalabel LOCAL(ct_main_label).word	LOCAL(ct_call_func) - datalabel LOCAL(ct_main_label)	.mode	SHmedia	.section	.text..SHmedia32, "ax"	.align	2	     /* This function loads 64-bit general-purpose registers from the	stack, from a memory address contained in them or from an FP	register, according to a cookie passed in r1.  Its execution	time is linear on the number of registers that actually have	to be copied.  See sh.h for details on the actual bit pattern.	The function to be called is passed in r0.  If a 32-bit return	value is expected, the actual function will be tail-called,	otherwise the return address will be stored in r10 (that the	caller should expect to be clobbered) and the return value	will be expanded into r2/r3 upon return.  */	

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -